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Integrity in Databases

• Databases are at the hearth of our technological infrastructure

• Outsourcing them is very common (for storage and processing)

• This introduces risks:

• “AWS, would you give me the response to this query?”

• But how do we know the response is correct? 

• Arbitrary faults, malicious behavior,…

“Verifiable” Databases (VDB) 
are a cryptographic solution to this problem
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Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

• Applications in addition to the above: blockchain settings
• providing proof for answers from “coprocessors”, etc.
• coprocessor ≈ sends SomeAnalysis(chain) to the chain

Before proceeding with verifiable databases, let’s have a quick cryptographic warm up.

smart 
contract coprocessor

SELECT * FROM Txs …
result



Warm Up: 
“Integrity” in Cryptography
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• Digital signatures

• verifies a sender (and more)

• Cryptographic hash functions, e.g., SHA, Blake

• verifies alterations on an object (and more)

• Example (file sharing):

• “The file I expect should have hash h”

•  assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
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• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution: 
just hash each piece.
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• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution: 
just hash each piece.

Instead, 
make a tree: final digest 

of O(1) size

To prove 
4 is suffix:

 client has or 
 can compute client receivesWe concatenate before hashing. E.g. C = H(A||B)

final proof 
of O(log) size

[Image source: transparency.dev]

Cryptographic “Integrity”—Less Common Examples 
(Merkle Trees)



From Merkle Trees to Authenticated Data Structures



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

• But there are more examples of ADS:

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

• But there are more examples of ADS:
• Authenticated Range Trees (what the name suggests)

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

• But there are more examples of ADS:
• Authenticated Range Trees (what the name suggests)
• Polynomial Commitments (X = polynomial, Y = poly evaluation)

* a property called 
   succinctness



From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates” 
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

• But there are more examples of ADS:
• Authenticated Range Trees (what the name suggests)
• Polynomial Commitments (X = polynomial, Y = poly evaluation)
• … * a property called 

   succinctness



Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion



Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

Integrity ≈ “is this what I expect?”



Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

Integrity ≈ “is this what I expect?”



Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated 
Data Structures 

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”



Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated 
Data Structures 

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”



Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated 
Data Structures 

(Merkle Trees, …)

?

Integrity ≈ “is this what I expect?”



Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated 
Data Structures 

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”



Computational 
Integrity 

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated 
Data Structures 

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”



Computational 
Integrity 

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing
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Integrity ≈ “is this what I expect?”
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“Computational Integrity”

Server (Prover)
Client (Verifier)

y, π

Proof that response is correct
Some program F

hF

“digest”

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

Claimed result

𝖵𝖾𝗋𝗂𝖿𝗒(hF, 𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍, y, π)

Common requirement: Succinctness 
(π is very small; 𝖵𝖾𝗋𝗂𝖿𝗒 is very fast)

* Fine print for the cryptographers: this slide mostly refers to SNARKs.
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Server (Prover)
Client (Verifier)

response, π

Computationally “weak” client; 
not going to store the DB

during some offline stage

DB, digest(DB)

query

Proof that response is correct
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• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust 

levels of data traces
• Non-interactive, and with short 

proofs
• especially important in smart 

contracts

Efficiency-related Security-related

• Based on solid cryptographic 
assumptions (of course)

• Also simple
• → easily auditable; easier to 

reason about
• → less vulnerable
• → more maintainable; easier to 

patch
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Common Tradeoffs in Verifiable DB

More/Less Expressive

More/Less Practical 

More/Less Simple 
& Secure

simple 
queries

complex 
queries

small proofs, 
fast prover,…

slower, 
larger proofs

reliable assumptions, 
small tech stack

heuristic assumptions, 
lots of moving parts

(this talk: only “SQL” DBs )
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How do we build verifiable databases?

Computational 
Integrity 

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated 
Data Structures 

(Merkle Trees, …)

General 
Cryptographic 

Proofs

VDBs
? ?

DB as object/DS; 
result of query as property

SQL queries as general 
computation

In fact, both are used.  
And they lead to different tradeoffs
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(S&P 2017)

General proofs & recursion 
(Lagrange Labs, Axiom,…)

qedb 
(this work)

Auth. Data 
Structures 

(mostly accumulators)

The Landscape of Verifiable DBs

General proofs

(~2009-2015)

(2017)

(2023-now)

(2025)
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This Talk’s Thesis

• New construction for the SQL setting (without SNARKs)
• qedb*

• New techniques
• New foundations

VDBs can be simple, expressive and efficient

* qedb is a recursive acronym standing for “qedb error-checks databases”. 
  It is also a shameless pun on it being a proof system for DBs.

qedb is a joint work with 
V. Botta, S. Bottoni, E. Ragnoli, A. Trombetta.

qedb 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Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(from ~2022)
From circuits to virtual 

machines 
(through recursion)

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

trace of a program 
in a VM

parallel  
proving

final 
proof

recursion  
(proving 
proofs)

Because of the VM trace, developers can just write code 
(e.g., Rust) that gets  compiled to the VM (instead of circuits)
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• Key observation of vSQL: 
• to save on proving time, use a “lightweight” general-purpose proof system 

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

• At the time, this was a big improvement on the proving performance of other 
solutions [e.g. Groth16]

• vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])
• Drawbacks:
• Requires implementing circuits emulating SQL
• Not great for developer experience
• Also cumbersome: a naive set intersection in a circuit has a quadratic 

overhead
• Relatively large proof size (100s of KB); other performance limitations
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The approach from SNARKs&Recursion

[Image credit: RiscZero]

just execution light-weight [STARK] prover  
for “base” proofs and recursion 

More expensive proving  
with very short proofs

although “lightweight” still requires 
tens-hundreds of GPU

Overall expressive and efficient schemes 
(if one can put in the resources)
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Drawback: Complexity

Very complex tech stack. 
 
Hard to analyze, maintain, audit.

The final 
proof system
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Drawback: Extra Security Concerns

• Security concern 1: complexity itself
• More building blocks and layers → More bugs that are harder to spot

• Security concern 2: cryptographic “hygiene” and assumptions
• Recursion depth?
• Conjectures?
• Random Oracle “as circuit”?
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Final Drawback: 

Is this the right way of “shaving” away the problem of Verifiable SQL?
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General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)
• short proof size / small verification cost 

• Sledgehammer approach to verifiable SQL ❌
• Extremely complex tech stack ❌
• Hard to analyze and audit ❌
• Suboptimal developer experience (especially if requires writing circuits) ❌
• Additional security risks (both from complexity and cryptographic heuristics) ❌

My claim: we may want to explore alternative approaches for verifiable SQL.



Verifiable DBs from 
Authenticated Data Structures

Let’s talk about to then get to

prior work qedb (this work)
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Recall:
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can prove y ∈ S
•at times, can also prove set relations  S ⊆ T, R ∪ S = T, …

•vector commitments:  
  can prove (y1, y2, …, yℓ) = ( ⃗v[ j])j∈J
•polynomial commitments: 
    can prove f(x) = y

Many advancements (2010s) 
from elliptic curves [pairings]

Standard construction: 
Merkle Trees (from hashing) 

has logarithmic-sized proof
accumulators, vector and 
polynomial commitments 
with O(1) sized proofs.
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Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

Techniques in a nutshell:
• “collapses” sets of rows with specific intervals properties 

(via accumulators)

• combines accumulators and authenticated interval trees

• proves OR/AND via set relation proofs
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Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

High computational requirements 
(proving and preprocessing)

Constrained expressivity 
and succinctness

Can easily get to hundreds of KB. 
Grows with DB size.

Very memory intensive

Their techniques inherently 
entail a quadratic overhead 
in order to support JOINs

E.g., doesn’t support  
comparison among columns

Proof size/verification grows with 
# of duplicated elements in response



This work (qedb) addresses many of these 
limitations
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Core Thesis of qedb

• highly efficient


• highly expressive


• from simple building blocks

It is possible to design Verifiable DBs that are:
First scheme with proof size independent of |DB| 

Can generate a proof in seconds on a 
common laptop (for a 1M-sized DB)

 No quadratic behavior for JOINs 
 (through new techniques) 

More expressive than IntegriBD 
and with none of the constraints 
(through new techniques)

No general-purpose SNARKs. 
Instead: specialized vector 
commitments and accumulators
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Preliminary Experimental Evaluation (DB with 100K rows)

Large time / proof size  
due to naive implementation 
of a range proof 
subprotocol

5x smaller than 
IntegriDB’s

One order of magnitude 
smaller than IntegriDB’s
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Segmenting Computations & 
Recursion Tree Logic

Circuits* for STARK recursion
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* or other representation 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VM**

** if applicable
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Designing powerful protocols is good. Doing that by glueing simple protocols is best.

An apocryphal quote from the holy scriptures 
(i.e., left as a comment just before a macro 

definitions in one of the early UNIX 
implementations) 

Thompson and Ritchie, creators of UNIX

echo “SELECT * FROM T WHERE block_number = 0x123”  | vdb_prover_no_crypto  |  vdb_compile_to_crypto

The qedb vision for Verifiable DBs (VDB) design:

Separate algorithmic (or 
information-theoretic) concerns 
from the cryptographic ones
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Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model 

(this is often very easy)
3. Use the cryptographic compiler  

  → get security of final VDB for free

But we can push modularity further!

Implication 1: Want to improve the design of a VDB?  
Improve its building blocks OR the idealized blueprint. 
Afterwards, no need to reprove security from scratch.

 vdb_compile_to_crypto = compile_to_ADS | compile_to_poly_comm

Implication 2: Want better building blocks? Just improve poly commitments.

Implication 3: Get post-quantum VDB for free! (from lattice-based poly commitments)
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Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not 
uncommon in SNARKs

• So what’s new here?
• This was not a design pattern among VDBs from 

ADS
• Our idealized models are tailored to the DB setting
• different “oracles” from those in SNARKs
• SNARKs: polynomial evaluation
• ours: vectors/sets-based (next slides)

• Implication: no algebra; simpler model to 
reason about

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]



So Far

• Landscape of prior VDB design and limitations


• Quick overview of efficiency and design philosophy of qedb


• NEXT: more on idealized protocols for VDBs and intuitions about how qedb 
works
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