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 Databases are at the hearth of our technological infrastructure
* Qutsourcing them is very common (for storage and processing)
* This introduces risks:
o “AWS, would you give me the response to this query?”
 But how do we know the response is correct?

* Arbitrary faults, malicious behavior,...

“Verifiable” Databases (VDB)
are a cryptographic solution to this problem
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Before proceeding with verifiable databases, let’s have a quick cryptographic warm up.



Warm Up:;
“Integrity” in Cryptography
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* Digital signatures

 verifies a sender (and more)
 Cryptographic hash functions, e.g., SHA, Blake

 verifies alterations on an object (and more)

 Example (file sharing):

 “The file | expect should have hash h”

. assert(H(fiIeReceived) == )
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(this talk: only “SQL” DBs ) 14, AND p_brand = ‘Brand#14

15. AND p_container IN (‘MED BAG’, ‘MED BOX’,

‘MED PKG’, ‘MED PACK’)
16. AND |_quantity >= 14 AND |_quantity <= 14 + 10

More/Less Practical

small proofs, ' I slower,
fast prover,... larger proofs

More/Less Simple

& Secure . . - .
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In fact, both are used. VDBs ,
And they lead to different tradeoffs ? \
More traditional notions More fine-grai notions Computational
of integrity of integrit —_— Integrity

(integrity as guarantee™Qf a
data structure satisfying a progerty)

Signatures Authenticated General
. Data Structures Cryptographic
Hashing (Merkle Trees, ...) Proofs
DB as object/DS; SQL queries as general

result of query as property computation
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This Talk’s Thesis

VDBs can be simple, expressive and efficient

* New construction for the SQL setting (without SNARKS)
e gedb”

 New techniques

 New foundations

gedb is a joint work with * gedb is a recursive acronym standing for “gedb error-checks databases”.
V. Botta, S. Bottoni, E. Ragnoli, A. Trombetta. It Is also a shameless pun on it being a proof system for DBs.
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 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting () )

» [for the cryptographers: essentially “GKR specialized to DBs’] GP () @
* At the time, this was a big improvement on the proving performance of other

Output (result)

solutions [e.g. Groth16] o
* vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST]) g@ """ g
* Drawbacks:
* Requires implementing circuits emulating SQL
* Not great for developer experience

* Also cumbersome: a naive set intersection in a circuit has a quadratic
overhead

* Relatively large proof size (100s of KB); other performance limitations

Input (database)
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Very complex tech stack.

Hard to analyze, maintain, audit.
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o Security concern 1: complexity itself

 More building blocks and layers — More bugs that are harder to spot
e Security concern 2: cryptographic “hygiene” and assumptions

* Recursion depth?

e Conjectures?

e Random Oracle “as circuit”?
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Final Drawback:

Is this the right way of “shaving” away the problem of Verifiable SQL?
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* Extremely expressive v

* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)
* short proof size / small verification cost

 Sledgehammer approach to verifiable SQL X

« Extremely complex tech stack X

» Hard to analyze and audit X

» Suboptimal developer experience (especially if requires writing circuits) X

» Additional security risks (both from complexity and cryptographic heuristics) X

My claim: we may want to explore alternative approaches for verifiable SQL.
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Quick Slide on Advancements in ADS eV

Recall:
accumulators:
can provey € §

-at times, can also prove set relations S C T, RUS =T, ...
vector commitments:

can prove (yla )72, R yf) — (‘—}[]] >j€J
‘polynomial commitments:
can prove f(x) =y

Standard construction: Many advancements (2010s)
Merkle Trees (from hashing) from elliptic curves [pairings]
c c accumulators, vector and
x ® ® ® has logarithmic-sized proof polynomial commitments

¢ & 9 9 with O(1) sized proofs.
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Verifiable DBs from ADS (state of the art) &

IntegriDB (CCS 2015)

Improves on the state of the art on
ADS-based verifiable DBs:

e combines simple hash-based auth. interval trees
with modern accumulators (from elliptic curves)

Join Multidim | Functions Nest.ed Update
range queries
Tree-based | YPPKoc x x x x v
Signature-based | PZMoc x x x x x
Multi-range [PPT1 x v x x x
IntegriDB v v v v 4

Table by Yupeng Zhang (from IntegriDB presentation @ ACM CCS 2015).



Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

1. SELECT suUM(l_extendedprice* (1 - |_discount))

Improves on the state of the art on 3. Prov Ineftem, part
ADS-based verifiable DBs: . p_partkey =|_perkey

6. AND p_brand = ‘Brand#41’
7.  AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM

e combines simple hash-based auth. interval trees PACK’, ‘SM PKG)

8. AND|_quantity >=7 AND |_quantity <=7 + 10

with modern accumulators (from elliptic curves) 00 Ax0 ]| Bodemoccs T CAIR" '8
p 10. AND |_shipmode IN (‘AIR’, ‘AIR REG’)
11. AND |_shipinstruct = ‘DELIVER IN PERSON’ )
12. OR
13. ( p_partkey = |_partkey
14. AND p_brand = ‘Brand#14’
15. AND p_container IN (‘MED BAG’, ‘MED BOX’,
‘MED PKG’, ‘MED PACK”)
o * 3 o 16. AND |_quantity >= 14 AND |_quantity <= 14 + 10
Jolin Mllltldlm Functions 17. AND p_size BETWEEN 1 AND 10
range 18. AND|_shipmode IN (‘AIR’, ‘AIR REG’)
19. AND |_shipinstruct = ‘DELIVER IN PERSON’ )
20. OR
21. ( p_partkey = |_partkey
22. AND p_brand = ‘Brand#23’
23. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG
PACK’, ‘LG PKG’)
S 24. AND |_quantity >= 25 AND |_quantity <= 25 + 10
25. AND p_size BETWEEN 1 AND 15

Multi-range [P .
26. AND |_shipmode IN (‘AIR’, ‘AIR REG’)
InteriDB v v v 27. AND |_shipinstruct = ‘DELIVER IN PERSON’ );

Tree-based | YPPKo¢

Signature-based | PZMoc

| X | X
x
| x| %

Figure 6: Query #19 of the TPC-H benchmark.

Table by Yupeng Zhang (from IntegriDB presentation @ ACM vuo cui10).
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IntegriDB (CCS 2015)

Techniques In a nutshell:

* “collapses” sets of rows with specific intervals properties
(via accumulators)

e combines accumulators and authenticated interval trees
* proves OR/AND via set relation proofs

18,
acc({1,2,3,4})
18,
acc({1,4})
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Pain Points of the State of the Art

(pain points of IntegriDB)

_ Can easily get to hundreds of KB.

P .I — / Grows with DB size.
FO01 9126 ...
/— Very memory intensive

High computational requirements I'heir techniques inherently

. . entall a quadratic overhead
R (proving and preprocessing) iNn order to support JOINS

N

h,,\_— 0 —__E.g., doesn't support
ARSI, — comparison among columns
—Y JV\ S— Constrained expressivity
SELECHCERQM 3 WHERE and succinctness Proof size/verification grows with

\ # of duplicated elements Iin response

e
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Core Thesis of gedb

It Is possible to design Verifiable DBs that are:

— First scheme with proof size independent of |DB|

/ — Can generate a proof in seconds on a

° h|gh|y efﬁCient ;/ common laptop (for a 1M-sized DB)
\ No quadratic behavior for JOINs

(through new techniques)

\ More expressive than IntegriBD

and with none of the constraints

* from Simple bUIIdlng blocks (through new techniques)

No general-purpose SNARKS.
/ Instead: specialized vector
commitments and accumulators

* highly expressive «
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Scheme

IntegriDB [85]
vSQL [84]

This work
(NB: commonly |resp| < |column| < |db|; for aggregate queries, |qry| = |resp|, else |qry| < [resp|).
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Zooming in on Efficiency
Asymptotics

Scheme Overhead in 7|, Viime Overhead in |7|, Viime Preprocessing &
(queries w/o JOINSs) (JOINSs) server storage
IntegriDB [85] log(|columnl) resp| - log [column| db| + n2,,.
vSQL [84] polylog|db polylog|db| db|
This work lqry| resp| db|

(NB: commonly |resp| < |column| < |db|; for aggregate queries, |qry| = |resp|, else |qry| < [resp|).



Zooming in on Efficiency

Preliminary Experimental Evaluation (DB with 100K rows)

Qrot @ SELECT SUM(price) FROM Transaction
WHERE account_id = '5938' AND trade_date = '2025-01-01'

- Computes total price of transactions executed by an account on a given date

Q CntTx SELECT COUNT(*) FROM Transaction
WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31'

T Computes the number of transactions executed within the first quarter

QMatchexp W SELECT tx_id, price, expected_price, price = expected_price
FROM Transaction WHERE trade_date = '2025-04-05'
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IntegriDB supports:

Predicate types: Multi-dim. range queries, list membership, any AND/OR.
K/ Aggregate queries: MAX, MIN, COUNT, SUM, AVG. J |
*

JOINSs: Equality-based joins over columns, possibly with duplicates.

Comparison between columns: Predicates involving more than one column
(e.g. “|...] WHERE c1 > 2¢2 + ¢3”).

Aggregation among columns: Expressions involving more than one column in
the SELECT clause (e.g. “SELECT c¢;1 + 2c2 FROM [...]”).

* Not always supported succinctly: loses succinct proof in case of duplicate elements.

gedb supports:

_/
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Designing powerful protocols is good. Doing that by glueing simple protocols is best.

KAn apocryphal quote from the holy scriptures

(i.e., left as a comment just before a macro
definitions in one of the early UNIX
implementations)

v

Thompson and Ritchie, creators of UNIX

The gedb vision for Verifiable DBs (VDB) design:

echo “S]

L]

LCT * FROM T WH.

LR

i block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Separate algorithmic (or
information-theoretic) concerns

from the cryptographic ones
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1. Design an “idealized” VDB KZG [52]
(dOn,t th|nk abOUt Cryptography) (or other polynomial commitments)
2. Prove its security in its own idealized model
(this is often very easy) l
3 Use the e 'z'éfal't;;igi};g ST
: accumulated set

Auth. Data Structures (ADS):

— get security of final VDB for free _ _ :
special vector commitments —>:

Linear-Map (S)VC (Section 9.1) Set Accumulators

- - : . and accumulators (u,v} ~ Y ) (additional property) ' X g Y, XUY s Z|
Implication 1: Want to improve the design of a VDB?
mprove its building blocks OR the idealized blueprint. | s e
Afterwards, no need to reprove security from scratch. -

Cryptographic

. Building Block

But we can push modularity further! I
= compile_to_ADS | compile_to_poly_comm linput to

. - ‘g , , . input to ) outputs
Implication 2: Want better building blocks? Just improve poly commitments. Idealized VDB { Compiler } ) VDB




Zooming in on Simplicity

A Second Lens—Modularity (continued)
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The resulting design flow:
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(or other polynomial commitments)
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Implication 3: Get post-quantum VDB for free! (from lattice-based poly commitments)
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o Splitting “idealized” and cryptographic parts is not [
uncommon in SNARKs

Challenge y

e So what’s new here?

_ _ fi(X) [ Oracle for {f;(X)};<i 5y S %
* This was not a design pattern among VDBs from | =Y li S
ADS [ J [ “ J
. . . . Prover Verifier
* QOur idealized models are tailored to the DB setting
- different “oracles” from those in SNARKSs [Source: Anca Nitulescu's kSNARKS: A Gente Introduction]

 SNARKSs: polynomial evaluation
e ours: vectors/sets-based (next slides)

* Implication: no algebra; simpler model to
reason about



So Far

* |Landscape of prior VDB design and limitations
* Quick overview of efficiency and design philosophy of gedb

 NEXT: more on idealized protocols for VDBs and intuitions about how gedb
works
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A Warm-up Example for ldealized VDBs

Consider a “query template” such as this:

SELECT C FROM T WHERE SomeCondition
example for SomeCondition:

Client will receive a response Resp like this: Cl > 4 AND C2 = “OCL”
= (X0

(Claimed) Set of relevant

Values of column at rows X
rows from column C

(also claimed)

What could the client check to be persuaded that Resp is correct?

1. SomeCondition(r) = T < r € X (right rows?)
2. Vre X y.=Clr]| (right values?)
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(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
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checks whether 4 x = v

(“If | read from u at positions X do | get v?”)
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c : ' handle to aset handle to a vector
Prover can send “pointers” (handles) to sets and vectors.
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A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: X v
c : ' handle to aset handle to a vector
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)

Toy example: checks whether ux = v

P V (“If | read from u at positions X do | get v?”)

v := (9,16, 25, 36, 49)



A Warm-up Example for ldealized VDBs

(continued)

SELECT C FROM T WHERE SomeCondition Resp/—(

We want to check: (Claimeq) Set of relevant Values of column at rows X

1. SomeCondition(r) = T < r € X (right rows?) rows from column C (also, claimed)
2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: handle)ti) e ’:’O N
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)
Toy example: checks whether U xy = v
p V (“If | read from u at positions X do | get v?”)
w:=(12,2%,...,992,100%) v := (9,16, 25, 36, 49)

X :={3,4,5,6,7}



A Warm-up Example for ldealized VDBs

(continued)

SELECT C FROM T WHERE SomeCondition Resp/—(

We want to check: (Claimeq) Set of relevant Values of column at rows X

1. SomeCondition(r) = T < r € X (right rows?) rows from column C (also, claimed)
2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: handle)ti) e ’:’O N
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)
Toy example: checks whether U xy = v
p V (“If | read from u at positions X do | get v?”)
w:= (12,22,...,99% 100?) Send w. X v = (9,16, 25, 36, 49)

X :={3,4,5,6,7} g




A Warm-up Example for ldealized VDBs

(continued)

SELECT C FROM T WHERE SomeCondition Resp/—(

We want to check: (Claimeq) Set of relevant Values of column at rows X

1. SomeCondition(r) = T < r € X (right rows?) rows from column C (also, claimed)
2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: handle)ti) e ’:’O N
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)
Toy example: checks whether U xy = v
p V (“If | read from u at positions X do | get v?”)
w:= (12,22,...,99% 100?) Send w. X v = (9,16, 25, 36, 49)

X :={3,4,5,6,7} > Assert read?(u, X ,v)
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1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector
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(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:
P SELECT C FROM T WHERE SomeCondition Vv
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(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:
P SELECT C FROM T WHERE SomeCondition v



A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:
P SELECT C FROM T WHERE SomeCondition V

Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column ¢ from an offline stage



A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column C from an offline stage
SONd X, Y




A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column C from an offline stage
SONd X, Y

> Assert read?(vc, X ,y) // checks condition 2 above



A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

< 2.Vre X y.=Clr] (rightvalues?] >

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column C from an offline stage
Send X : y ...................................................................................................................... AL e e AR ERE R RAEANEREREEEREREAEESARERSESREEEERREERERsREnannal

> Assert read?(v¢, X, y)@ecks condition 2 above




A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

< 2.Vre X y.=Clr] (rightvalues?] >

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column ¢ from an offllnestage
Send X , y ...................................................................................................................... .
g Assert read?(vc, X, y)@ecks condition 2 above

Run subprotocol for checking SomeCondition(r) =T < re X



A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
<. SomeCondition(r) =T < r & X (r/ghtrovv\s;?D rows from column € (also, claimed)

< 2. Vre X y, = C[r] (right ht values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column ¢ from anoffllnestage
Send X , y ...................................................................................................................... T T
> Assert read?(v¢, X, y)Q/ checks condition 2 a;b_q@

< Run subprotocol for checking SomeCondition(r) = T <= @
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ldx(db)
Preprocess db and compute handles . 'ldx : 'v'ldx e
P(qry, resp) Vf(qry, resp)
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Using access to mhine and
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run any of the operations the verifier is endowed with.

Output accept or reject.

General flow in an idealized protocol



The Flow of an Idealized Protocols

ldx(db)

Preprocess db and compute handles QX'ldx : nv'ldx e

P(qry, resp) Vf(qry, resp)

Using access to mhine and

Idx Idx P P
OX1 ’ []vl aaaaa (3X1 ’ []vl 9999

run any of the operations the verifier is endowed with.

Output accept or reject.

General flow in an idealized protocol

Key role of handles (and their ops):
providing expressivity, but also succinctness.




The Flow of

an ldealized Protocols

ldx(db)

ldx

Preprocess db and compute handles QX'ldx y U1 o

P(qry, resp)

Vf(qry, resp)
[]’v']D_ ) Ct)(]'_D ) y TChi
Using access to mhine and
Id Id P P
X1 U1 e X1 5 U1 -
@n any of the operations the verifier is endowed@
Output acceptorreject:

General flow in an idealized protocol

Key role of handles (and their ops):
providing expressivity, but also succinctness.
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“Atomic” Operations in an ldealized VDB

read?(uw, X ,v) (read)

?

X CY Z =X UY Z;XﬂY(setops)

.,
u = v + w (homomorphism) <u, v > =1y (inner product)

v [X] -0 (zero test)

Q1: Are these operations expressive enough?

Q2: Can we compile them through simple cryptographic building blocks?
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From these:

read?(u, X ,v) (read)
?
X CY Z =XUY Z;XﬂY(setops)

0
u = av + w (homomorphism) <u, v > =1y (inner product)

v [X] ~0 (zero test)

We can get these (and more):
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Idealized Protocols are Very Expressive

From these:

read?(u, X ,v) (read)
?
X CY Z =XUY Z;XﬂY(setops)

0
u = av + w (homomorphism) <u, v > =1y (inner product)

v [X] ~0 (zero test)

We can get these (and more):

(?

? 7 § : g ? |
a< v < B (range check) v; =Y (sum check in target subset)
je X

”
X =eqSet(u, v) (tests where two slices are equal)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
?
XCY ZZXUY Z = XNY (setops)

.
u = aw + w (homomorphism) <u, v > =y (inner product)

v [X] ~0 (zero test)
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From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

?
XCY ZZXUY Z = XNY (setops)
u=av+ w (homomorphism) <u, 'v> = y (inner product)

v [X] ~0 (zero test)

We commit to handles:

X v

accumulator linear-map vector commitment
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From ldealized to Cryptographic VDB

?

l?

read?(uw, X ,v) (read)
? ?
X CY Z =X UY Z = X NY (setops)
u =av + w (homomorphism) <u, 'v> = y (inner product)

v [X] ~0 (zero test)

We commit to handles:

X

accumulator

Accumulators:

()
linear-map vector commitment

VfySubset(accx, accy, Tsubset) (checks X C Y')

R T

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators
(u, ’v> = Y ) (additional property) 1x g Y, XUY = Z

Cryptographic
Building Blocks

input to

a4
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~
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From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

CXCY Z L XUy Z < XNY (setops) O

u=av+ w (homomorphism) <u, 'v>

v [X] ~0 (zero test)

= y (inner product)

We commit to handles:

X

Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y')

()
accumulator linear-map vector commitment

zero-testing on

B L R R N L \ ----------------------------------------------
.
* .
* .
.
.
.
.
.
.

Linear-Map (S)VC

Vi

accumulated set
(Section 9.1) Set Accumulators

?

(u,v) = Y (additional property) | X CY, X UY = Z
............................................... P
|
|
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Building Blocks
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From ldealized to Cryptographic VDB

?

l?

read?(uw, X ,v) (read)
? ?
X CY Z =X UY Z = X NY (setops)
u =av + w (homomorphism) <u, 'v> = y (inner product)

v [X] ~0 (zero test)

We commit to handles:

X

accumulator

Accumulators:
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linear-map vector commitment

VfySubset(accx, accy, Tsubset) (checks X C Y')

R T

zero-testing on
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From ldealized to Cryptographic VDB
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v [X] —_ O (ZB’I"O tBSt) ..................................... Zero_testlng On ......................................
: accumulated set
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We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to ( . ] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)
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From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) ..................................... Zero_testlng On ......................................
: accumulated set
. [ Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
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Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)
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From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
X Cy ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product)
v [X] ; O (ZB’I"O tBSt) ..................................... Zero_tesltlng On ......................................
: accumulated set
. . . (Section 9.1) \ Set? Accumulators
W Linear-map Vector Commitments and their (additional property) | X C Y, XUY % Z
Practical ApplicatiOIlS .............. e
Cryptographic
Matteo Campanelli’, Anca Nitulescu!, Carla Rafols?, Alexandros Zacharakis?, and Arantxa Zapico?*. | Building Blocks
ACCU' ! Protocol Labs {matteo, anca}@protocol.ai input to
 Universitat Pompeu Fabra {carla.rafols, alexandros.zacharakis, arantxa.zapico }@Qupf.edu ~ ] _—
: { Compiler i VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y) J

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) ..................................... Zero_testlng On ......................................
: accumulated set
. [ Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to ( . ] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

?

? ?
X CY Z =X UY Z =X NY (setops)

? ? .
u =av + w (homomorphism) @, 'v> =1y (inner prod@ J'

v [X] ~0 (zero test)

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators

We Commit to handles: (u,v} ; Y ) (additional property) ' X g Y,X uY ; A
X v !
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
_ ldealized VDB |-t Compiler |
Vector Commitments: VfySubvec(cms,, X, y, Toubvec) (checks vx = y) | )

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) ..................................... Zero_testlng On ......................................
: accumulated set
. [ Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to ( . ] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
— 2 ?
< U =oav + w (homomorp@ <u, 'v> =y (inner product)
~—— J'
v [X] —_ O (ZB’I"O tBSt) ..................................... Zero_testlng On ......................................
: accumulated set
. [ Linear-Map (S)VC | (Section 9.1) | Set Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to ( . ] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Toubvec) (checks vx = )

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) ..................................... Zero_testlng On ......................................
: accumulated set
. [ Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to ( . ] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) ..................................... Zero_testlng On ......................................
: accumulated set
. [ Linear-Map (S)VC | (Section 9.1) | Set Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to ( . ] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) ..................................... Zero_testlng On ......................................
: accumulated set
. [ Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to ( . ] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

, . , KZG [52]
X CY Z =X UY Z = X NY (setops)

(or other polynomial commitments)

?

u = aw + w (homomorphism) <u, v > =y (inner product) l

v [X] ~0 (zero test)

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators

We Commit to handles: (u,v} ; Y ) (additional property) ' X g Y,X uY ; A
X v !
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
_ ldealized VDB |-t Compiler |
Vector Commitments: VfySubvec(cms,, X, y, Toubvec) (checks vx = y) | )

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

? — KZG [52 —
X CY Z<ZXUY Z < XNY (setops) < 52 P

— or other polynomial commitments

? : ? .
u =av + w (homomorphism) <u, v > =y (inner product)

v [X] ~0 (zero test)

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators

We Commit to handles: (u,v} ; Y ) (additional property) ' X g Y,X uY ; A
X v !
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
_ ldealized VDB |-t Compiler |
Vector Commitments: VfySubvec(cms,, X, y, Toubvec) (checks vx = y) | )

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)



The final construction: gedb

* gedb is simply a specific idealized VDB compiled “through KZG” (with the
approach from last slide)



The final construction: gedb

* gedb is simply a specific idealized VDB compiled “through KZG” (with the

approach from last slide)

— MIN query: consider the query:

Q6: SELECT MIN(col,,;) FROMT (7)

Pre-processing: we assume that the Verifier has the slice handle tgt corresponding to coligt.

Proof computation: the Prover does as follows:
— compute the set of positions argmin(tgt) in col;,; of the minimum values: argmin(tgt) =

{j : colyge[j] <v forallv € colyyt} (here we denote with colyg:[j] the j-th element in the
slice referred by tgt .

— compute X, gmin and sends it to the Verifier

Proof verification: the Verifier performs the following steps:
B get oXargmz'n

— retrieve vmin ¢ read( 5Xargmin , tgt )
— define ntgt’ = gt — u(vm;n, oy Umin)
— check that every value in the slice handle ggt’ lies in the interval [0, 2")

Completeness follows from the fact that X, 4min actually contains only the indices with
the minimum value in the column (it can contain more than one element if the minimum

is repeated multiple times). Therefore vmin < read( 5Xargmin , tgt ) outputs a vector con-

taining only the minimum value in the column col;4:. The correctness is also enforced by the
range proof proving that after removing from col;y: the vector vmin[0]u1, where uy is the
slice comprising of all ones, it is contained in the range [0,2¢) meaning that these values are

all greater than v,;,[0]. The adversarial prover sends X, gmin ; therefore if the verification

returns 1 while SatisfiesQry (db, qry,resp) = false, it means that X,.gmin are not the in-

dexes containing the minimum value. If this is the case, the range proof fails since there is at
least a value in ntgt’ that is less then 0, since the range proof is sound it can happen only

with negligible probability.
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Proof verification: the Verifier pej
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Nested queries. Consider the query:

Q9: SELECT col; FROMT; WHERE cols IN

10
(SELECT col3 FROM T, WHERE coly = u) (10)

Pre-processing: as before.

Proof computation: Prover sends to Verifier the following set handles: col; (the entry of set

COl2

handle ~cols corresponding to value v) and Ocolgv1 ,

colzvn , that are the set

vg 1Y O

handles entries in col, of the values {v{,vs,...,v,} contained in the answer to the sub-query

SELECT cols FROM T5 WHERE col4 = w.
Proof verification: Verifier creates the new set handle —cola,, equalto _cola, U _colz, U---U

~colz, ; finally, Verifier retrieves the answer of the nested query via read( ~cola,,, , []col4 ).

Again, to prove that the query result contains all the valid tuples, prover and verifier engage
in a protocol similar to the second part of the one defined for Query . In general, we can handle
nested queries through techniques analogous to those in [85] but without having to rely on a
preprocessing containing auxiliary info on every possible pair of columns in the same table (which
leads to its quadratic blowup).

returns 1 while SatisfiesQry (db, qry, resp) = false, it means that X,;gmin are not the in-

dexes containing the minimum value. If this is the case, the range proof fails since there is at
least a value in ntgt’ that is less then 0, since the range proof is sound it can happen only

with negligible probability.
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Proof computation: the Prover d
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{7 : colyge[j] < v forallv € cf
slice referred by gt .

— compute ~X,rgmin and seng

Q9 :

Pre-processing: as before.

SELECT col; FROM T; WHE

|
Join queries. Consider tables T, T» with respective columns named pk, col; and fk, cols.

As their names suggest pk is primary key of table 77, and fk is a foreign key in 75 referencing

(SELECT col3 FROM T; WHER] values from pk. Consider the query:

Proof wverification: the Verifier pe} Proof computation: Prover sends to Verifier the following s

- get oXargmz'n
— retrieve vmin ¢ read( 5Xargn

— define ntgt’ = ntgt — ﬂ(vmim

— check that every value in the

Completeness follows from the f
the minimum value in the colur
is repeated multiple times). Ther

taining only the minimum value i
range proof proving that after re
slice comprising of all ones, it is ¢

all greater than v,;,[0]. The adver

handle ~cols corresponding to value v) and ~cola,

handles entries in coly of the values {v,vo, ...

1’ O

SELECT col3 FROM T, WHERE col4 = wu.
Proof verification: Verifier creates the new set handle cola

—~cola, ; finally, Verifier retrieves the answer of the nested

Again, to prove that the query result contains all the va

in a protocol similar to the second part of the one defined
nested queries through techniques analogous to those in
preprocessing containing auxiliary info on every possible pai

leads to its quadratic blowup).

Q5: SELECT x FROMT; JOINT, ON pk = fk

(6)
f

| Pre-processing: as before.
Proof computation: the Prover performs the following steps:

,Upn } contgi

— retrieves the set handle fk referring the inverse lookup {j : fk[j] = v}, for each v € V).

¥

— retrieves the set handle —pk referring the inverse lookup {j : pk[j| = v}, for each v € V.
C

1 The Prover sends —pk , ~fk to the Verifier.

fp:
|

Proof verification: The Verifier performs the following steps:

compute pk + read( -pk , pk)

returns 1 while SatisfiesQry (db, qry, resp) = false, it means that X,;gmin are not the in-

dexes containing the minimum value. If this is the case, the range proof fails since there is at
least a value in ntgt’ that is less then 0, since the range proof is sound it can happen only

with negligible probability.

compute ﬁc « read( ofk , (k)

check that ﬁc = ﬁ
rst; « read( opk , fh.rst)

compute rsty read( ~fk , HTg.rst )
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* A lookup-singularity for VDBs? d S.

- Formally verified implementation? Questions?



