On the Design of Modern
Verifiable Databases

FROM lineitem, part
Matteo Campanelli @ University of Tartu—October 7th 2025 AND p_containe 1\ (SM CASE', ‘SM BOX', 'SV
Offchain Labs

SELECT éUM(I_extendedprice* (1 -1 _discount))
AS revenue
(p_partkey = |_partkey \j
AND p_brand = ‘Brand#41’
Mmatteo@offchainlalbs.com
WWW.bInarywhales.com

https://ia.cr/2025/1408
mailto:matteo@offchainlabs.com

Integrity in Databases

Integrity in Databases

 Databases are at the hearth of our technological infrastructure

Integrity in Databases

 Databases are at the hearth of our technological infrastructure

* Qutsourcing them is very common (for storage and processing)

Integrity in Databases

 Databases are at the hearth of our technological infrastructure
* Qutsourcing them is very common (for storage and processing)

 This introduces risks:

Integrity in Databases

 Databases are at the hearth of our technological infrastructure
* Qutsourcing them is very common (for storage and processing)
* This introduces risks:

o “AWS, would you give me the response to this query?”

Integrity in Databases

 Databases are at the hearth of our technological infrastructure
* Qutsourcing them is very common (for storage and processing)
* This introduces risks:

o “AWS, would you give me the response to this query?”

 But how do we know the response is correct?

Integrity in Databases

 Databases are at the hearth of our technological infrastructure
* Qutsourcing them is very common (for storage and processing)
* This introduces risks:
o “AWS, would you give me the response to this query?”
 But how do we know the response is correct?

* Arbitrary faults, malicious behavior,...

Integrity in Databases

 Databases are at the hearth of our technological infrastructure
* Qutsourcing them is very common (for storage and processing)
* This introduces risks:
o “AWS, would you give me the response to this query?”
 But how do we know the response is correct?

* Arbitrary faults, malicious behavior,...

“Verifiable” Databases (VDB)
are a cryptographic solution to this problem

Further Motivation for VDBs

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider
* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider
* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

 Pipe dream = every data flow from every DB APIs authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity

 Potential outcome: Information flow that is fully certified cryptographically

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity
* Potential outcome: Information flow that is fully certified cryptographically
 Even a “partial version” of the pipe dream might be useful, of course

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity
* Potential outcome: Information flow that is fully certified cryptographically
 Even a “partial version” of the pipe dream might be useful, of course

 Applications in addition to the above: blockchain settings

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider
 Pipe dream = every data flow from every DB APIs authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity
 Potential outcome: Information flow that is fully certified cryptographically
 Even a “partial version” of the pipe dream might be useful, of course
 Applications in addition to the above: blockchain settings
* providing proof for answers from “coprocessors”, etc.

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider
* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity
* Potential outcome: Information flow that is fully certified cryptographically
 Even a “partial version” of the pipe dream might be useful, of course
 Applications in addition to the above: blockchain settings
* providing proof for answers from “coprocessors”, etc.
* coprocessor = sends SomeAnalysis(chain) to the chain

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity
* Potential outcome: Information flow that is fully certified cryptographically
 Even a “partial version” of the pipe dream might be useful, of course

 Applications in addition to the above: blockchain settings
* providing proof for answers from “coprocessors”, etc.
* coprocessor = sends SomeAnalysis(chain) to the chain

€ »lagrange
> I\ Axiom

\9 SPACEANDTIME

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity
* Potential outcome: Information flow that is fully certified cryptographically
 Even a “partial version” of the pipe dream might be useful, of course

 Applications in addition to the above: blockchain settings
* providing proof for answers from “coprocessors”, etc.
e« coprocessor =~ sends SomeAnalysis(chain) to the chain St

SELECT * FROM Txs ...

_——————
p result

€ »lagrange

smart

COpProcessor
contract P

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity
* Potential outcome: Information flow that is fully certified cryptographically
 Even a “partial version” of the pipe dream might be useful, of course

 Applications in addition to the above: blockchain settings
* providing proof for answers from “coprocessors”, etc.
e« coprocessor =~ sends SomeAnalysis(chain) to the chain St

SELECT * FROM Txs ...

_——————
p result

€ »lagrange

smart

COpProcessor
contract P

Further Motivation for VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

* Pipe dream = every data flow from every DB APIls authenticated through a verifiable DB
* Analogy: HTTPS and its ubiquity
* Potential outcome: Information flow that is fully certified cryptographically
 Even a “partial version” of the pipe dream might be useful, of course

 Applications in addition to the above: blockchain settings
* providing proof for answers from “coprocessors”, etc.
e« coprocessor =~ sends SomeAnalysis(chain) to the chain St

SELECT * FROM Txs ...

-_————
p result

€ »lagrange

smart

COpProcessor
contract P

Before proceeding with verifiable databases, let’s have a quick cryptographic warm up.

Warm Up:;
“Integrity” in Cryptography

Cryptographic “Integrity” —Common Examples

Cryptographic “Integrity” —Common Examples

* Digital signatures

Cryptographic “Integrity” —Common Examples

* Digital signatures

 verifies a sender (and more)

Cryptographic “Integrity” —Common Examples

* Digital signatures

 verifies a sender (and more)

 Cryptographic hash functions, e.g., SHA, Blake

Cryptographic “Integrity” —Common Examples

* Digital signatures

 verifies a sender (and more)

 Cryptographic hash functions, e.g., SHA, Blake

 verifies alterations on an object (and more)

Cryptographic “Integrity” —Common Examples

* Digital signatures

 verifies a sender (and more)

 Cryptographic hash functions, e.g., SHA, Blake

 verifies alterations on an object (and more)

 Example (file sharing):

Cryptographic “Integrity” —Common Examples

* Digital signatures

 verifies a sender (and more)
 Cryptographic hash functions, e.g., SHA, Blake

 verifies alterations on an object (and more)

 Example (file sharing):

 “The file | expect should have hash h”

Cryptographic “Integrity” —Common Examples

* Digital signatures

 verifies a sender (and more)
 Cryptographic hash functions, e.g., SHA, Blake

 verifies alterations on an object (and more)

 Example (file sharing):

 “The file | expect should have hash h”

. assert(H(fiIeReceived) ==)

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) == h)?

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?
* | receive a claimed suffix of the file and want to check whether it actually is the suffix.

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) == h)?
* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?

* | receive a claimed suffix of the file and want to check whether it actually is the suffix.
* Checking whether a public key is in a list of a trusted keys (without reading the whole list)

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?
* | receive a claimed suffix of the file and want to check whether it actually is the suffix.
* Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution:
just hash each piece.

F

28 B

[Image source: transparency.dev]|

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?
* | receive a claimed suffix of the file and want to check whether it actually is the suffix.
* Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution: Instead,

- . K N\ :
just hash each piece. make a tree: H final digest

of O(1) size
C G

B F

0280 $88d

[Image source: transparency.dev] We concatenate before hashing. E.g. C = H(A||B)

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?
* | receive a claimed suffix of the file and want to check whether it actually is the suffix.
* Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution: Instead, To prove

|] A/\ _ _ g - :.‘"'s‘.
just hash each piece. make a tree: H gp'g' (‘13')'93?;; 4 is suffix: d Lk

C G C G

B

B F

thdd sEgd B8 ¢ i

[Image source: transparency.dev] We concatenate before hashing. E.g. C = H(A||B) _> client has or
' can compute

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?
* | receive a claimed suffix of the file and want to check whether it actually is the suffix.
* Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution: Instead, To prove

|] A/_\ _ _ ’ - :.‘"'s‘.
just hash each piece. make a tree: H gp'g' (‘13')'93?;; 4 is suffix: d Lk

C G © G
A B D A D A 8 ® I
thdd sEgd B8 ¢ v

[Image source: transparency.dev] We concatenate before hashing. E.g. C = H(A||B) client has or : :
: —» can compute — client receives

B F

F

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?
* | receive a claimed suffix of the file and want to check whether it actually is the suffix.
* Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution: Instead, To prove

|] A/_\ _ _ ’ - :.‘"'s‘.
just hash each piece. make a tree: H gp'g' (‘13')'93?;; 4 is suffix: d Lk

A B D A D A B @ |=
© @ © ¢ “© 9 @ @ ® @ @ W

[Image source: transparency.dev] We concatenate before hashing. E.g. C = H(A||B) client has or : :
: —» can compute — client receives

B F

F

Cryptographic “Integrity” —Less Common Examples
(Merkle Trees)

 Limitation with assert(H(fiIeReceived) ==)?

* | must hash the whole object (the file) to check its integrity
 What if | simply want this for example?
* | receive a claimed suffix of the file and want to check whether it actually is the suffix.
* Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution: Instead, To prove

|] A/_\ _ _ ’ - :.‘"'s‘.
just hash each piece. make a tree: H gp'g' (‘13')'93?;; 4 is suffix: d Lk

© ? | —©

final proof
B

F F of O(log) size ~——A_ B _— |:

thdd sEgd B8 ¢ v

[Image source: transparency.dev] We concatenate before hashing. E.g. C = H(A||B) client has or : :
: —» can compute — client receives

From Merkle Trees to Authenticated Data Structures

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

5B

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G

5B

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)

D8 B

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

D8 B

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
X =set (root of tree is a digest to a set) i? i) gi ip

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
« X =set (root of tree is a digest to a set) i? gf gj %
* Y =set membership = = = =

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
« X =set (root of tree is a digest to a set) QE gf gj %
* Y =set membership = = = =

e such an ADS is called an accumulator

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
« X =set (root of tree is a digest to a set) i? gf gj %
* Y =set membership = = = =

 such an ADS is called an accumulator
 Merkle Trees actually support also X=vector, Y= lookup by index

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
« X =set (root of tree is a digest to a set) QE gf gj %
* Y =set membership = = = =

e such an ADS is called an accumulator
 Merkle Trees actually support also X=vector, Y= lookup by index
e such an ADS is called a vector commitment

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
« X =set (root of tree is a digest to a set) QE gf gj %
* Y =set membership = = = =

 such an ADS is called an accumulator

 Merkle Trees actually support also X=vector, Y= lookup by index
 such an ADS is called a vector commitment

* But there are more examples of ADS:

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
« X =set (root of tree is a digest to a set) QB gf gj Qi)
* Y =set membership = = = =

 such an ADS is called an accumulator

 Merkle Trees actually support also X=vector, Y= lookup by index
 such an ADS is called a vector commitment

* But there are more examples of ADS:
 Authenticated Range Trees (what the nhame suggests)

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
« X =set (root of tree is a digest to a set) QB gj gj QS
* Y =set membership = = = =

 such an ADS is called an accumulator

 Merkle Trees actually support also X=vector, Y= lookup by index
 such an ADS is called a vector commitment

* But there are more examples of ADS:
 Authenticated Range Trees (what the nhame suggests)
 Polynomial Commitments (X = polynomial, Y = poly evaluation)

* a property called
succinctness

From Merkle Trees to Authenticated Data Structures

 An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

e can produce a digest to object of type X C G
e can prove property Y about (without providing X in its entirety*)
 Merkle Trees are an example for:

A D
« X =set (root of tree is a digest to a set) QB gj gj QS
* Y =set membership = = = =

 such an ADS is called an accumulator

 Merkle Trees actually support also X=vector, Y= lookup by index
 such an ADS is called a vector commitment

* But there are more examples of ADS:
 Authenticated Range Trees (what the nhame suggests)
 Polynomial Commitments (X = polynomial, Y = poly evaluation)

* a property called
succinctness

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Integrity = “is this what | expect?”

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Integrity = “is this what | expect?”

More traditional notions
of integrity

Sighatures

Hashing

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Integrity = “is this what | expect?”

More traditional notions More fine-grained notions

of integrity > of integrity
(integrity as guarantee of a
data structure satisfying a property)

Signatures Authenticated
| Data Structures
Hashing (Merkle Trees, ...)

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Integrity = “is this what | expect?”

More traditional notions More fine-grained notions

of integrity > of integrity >
(integrity as guarantee of a

data structure satisfying a property)

Signatures Authenticated
| Data Structures
Hashing (Merkle Trees, ...)

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Integrity = “is this what | expect?”

More traditional notions More fine-grained notions
of integrity > of integrity >
(integrity as guarantee of a ?

data structure satisfying a property) .

Signatures Authenticated
Data Structures
Hashing (Merkle Trees, ...)

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Integrity = “is this what | expect?”

More traditional notions More fine-grained notions

of integrity > of integrity >
(integrity as guarantee of a

data structure satisfying a property)

Signatures Authenticated
| Data Structures
Hashing (Merkle Trees, ...)

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Integrity = “is this what | expect?”

More traditional notions More fine-grained notions Computational

of integrity —_— of integrity —_— Integrity
(integrity as guarantee of a

data structure satisfying a property)

Signatures Authenticated
| Data Structures
Hashing (Merkle Trees, ...)

Wait. Weren’t We Talking About Sighatures a Second Ago?

Integrity is a ductile notion

Integrity = “is this what | expect?”

More traditional notions More fine-grained notions Computational

of integrity —_— of integrity —_— Integrity
(integrity as guarantee of a

data structure satisfying a property)

Signatures Authenticated General |
| Data Structures Cryptographic
Hashing (Merkle Trees, ...) Proofs

General Cryptographic Proofs

“Computational Integrity”

Server (Prover)

TG

o

I at

B s

7 Z 7%///'/1 ;/‘.@‘ﬂ
N

Client (Verifier)

General Cryptographic Proofs

“Computational Integrity”

Server (Prover)

A Tife tete

It
{’ e
Ny e
s
s AT
) =

Client (Verifier)

L

Some program F

“Computational Integrity”

Server (Prover)

eneral Cryptographic Proofs

J"ﬁ ﬁ!!’_ﬁ’_
Ny 2
7 ’,,./}%///7;'!2/;“*(

Client (Verifier)

L

Some program F

Client would like to learn
the value of F(somelnput)

“Computational Integrity”

Server (Prover)

eneral Cryptographic Proofs

hy

‘\-'."'/l ! a‘{ \

(TACATIATIE

J"ﬁ ﬁ!?_l_i’_
Ny 2
7 ’,,./}%///7;'!2/;“*(

Client (Verifier)

“digest”

L

Some program F

Client would like to learn
the value of F(somelnput)

eneral Cryptographic Proofs

“Computational Integrity”

Server (Prover)

Y,

hy

‘\-'."'/l ! a‘{ \

(TACATIATIE

J"ﬁ ﬁ!?_l_i’_
Ny 2
7 ’,,./}%///7;'!2/;“*(

Client (Verifier)

“digest”

L

Some program F

Client would like to learn
the value of F(somelnput)

General Cryptographic Proofs

“Computational Integrity”

Claimed result

Y, 1

'\-',"'/l ! a‘{ \

’ - Fl)“’.{ljlb(‘}-i:[i,
A R 9,

Server (Prover
ver (Prover) Client (Verifier)

“digest”

Some program F

Client would like to learn
the value of F(somelnput)

General Cryptographic Proofs

“Computational Integrity” “digest”

Claimed result

y, 1

A 437 e
/ Z ,%/// ,:zé_c

Proof that response is correct Ny~

[l
i ="
e g
Bl =z
o, =

Some program F

Server (Prover)

Client (Verifier)

Client would like to learn
the value of F(somelnput)

General Cryptographic Proofs

“Computational Integrity” “digest”
hF

2
z 't%.“ s) x) e
N > ” ’
s CEEARER
S
Gl ’I\ -
NSNS

Claimed result

Y,

N

Proof that response is correct

Some program F

Server (Prover)

Verify(h,, somelnput, y, 7) Client (Verifier)

Client would like to learn
the value of F(somelnput)

General Cryptographic Proofs

“Computational Integrity” “digest”
hF

b 4 A L‘. ‘
S 4% ae %% V2
> ’ :\i' ,\a Hl) A

B\
, *’)x?!l'm}-m\u,

L v 77 e

Claimed result

Y,

Proof that response is correct

Some program F

Server (Prover)

Verify(h,, somelnput, y, 7) Client (Verifier)

Common requirement: Succinctness

(71' is very small; Verify is very fast) Client would like to learn
the value of F(somelnput)

General Cryptographic Proofs

“Computational Integrity” “digest”
hF

4 I.
&
s .
. -
1‘_."/
£
% 4 5,
£+
P 1
(| L :
ST
Ny P >
e, P
= 4 /
3 s A / \
N 744 /
"W >, 3 / \
7 A
s T
XA
b ZA XN
W) L I 5 L Y . O T T L
=y 2 ') S
B g
A @ h
) a AN v ’ I L%
\J T
2
B lt“ '\\'- .'xr‘,ll ,"{\
* N 2 B i
\» !)
o
3! ‘ ‘ A
-
: & .
/
)
(/..l\
- g

Claimed result

Y,

% RN T
p,}m’]lhp}-ﬁﬂll.

s

Proof that response is correct

Some program F

Server (Prover)

Verify(h,, somelnput, y, 7)

Common requirement: Succinctness
(71' is very small; Verify is very fast) Client would like to learn

* Fine print for the cryptographers: this slide mostly refers to SNARKS. the value of F(somelnput)

Back to Verifiable Databases

Verifiable Databases (VDB)

\‘ ",’:/ l,' ," “‘ \
Vit vy,

Computationally “weak” client;
not going to store the DB

Server (Prover
ver (Prover) Client (Verifier)

Verifiable Databases (VDB)

during some offline stage

DB, digest(DB)
4—

L

Computationally “weak” client;
not going to store the DB

Server (Prover
ver (Prover) Client (Verifier)

Verifiable Databases (VDB)

during some offline stage

O

B, digest(DB)

query

Computationally “weak” client;
not going to store the DB

Server (Prover
ver (Prover) Client (Verifier)

Verifiable Databases (VDB)

during some offline stage

O

B, digest(DB)

query
4—

response, T
—>

Computationally “weak” client;
not going to store the DB

Server (Prover
ver (Prover) Client (Verifier)

Verifiable Databases (VDB)

during some offline stage

O

B, digest(DB)

query
4—

response, T

Computationally “weak” client;
not going to store the DB

S P
erver (Prover) Client (Verifier)

Proof that response iIs correct

Desirable Features In Verifiable Databases

Efficiency-related Security-related

Desirable Features In Verifiable Databases

Efficiency-related Security-related

» Efficient (prover and verifier)

Desirable Features In Verifiable Databases

Efficiency-related Security-related

» Efficient (prover and verifier)
* Publicly-verifiable

Desirable Features In Verifiable Databases

Efficiency-related Security-related

» Efficient (prover and verifier)
* Publicly-verifiable

 Important to establish trust
levels of data traces

Desirable Features In Verifiable Databases

Efficiency-related Security-related

» Efficient (prover and verifier)
* Publicly-verifiable

 Important to establish trust
levels of data traces

e Non-interactive, and with short
proofs

Desirable Features In Verifiable Databases

Efficiency-related Security-related

» Efficient (prover and verifier)
* Publicly-verifiable

 Important to establish trust
levels of data traces

e Non-interactive, and with short
proofs

e especially important in smart
contracts

Desirable Features In Verifiable Databases

Efficiency-related Security-related
» Efficient (prover and verifier) Based on solid cryptographic
. Publicly-verifiable assumptions (of course)

 Important to establish trust
levels of data traces

e Non-interactive, and with short
proofs

e especially important in smart
contracts

Desirable Features In Verifiable Databases

Efficiency-related Security-related
» Efficient (prover and verifier) Based on solid cryptographic
. Publicly-verifiable assumptions (of course)
» important to establish trust * Also simple

levels of data traces

e Non-interactive, and with short
proofs

e especially important in smart
contracts

Desirable Features In Verifiable Databases

Efficiency-related Security-related
» Efficient (prover and verifier) Based on solid cryptographic
. Publicly-verifiable assumptions (of course)
» important to establish trust * Also simple
levels of data traces — easily auditable; easier to
» Non-interactive, and with short reason about
proofs

e especially important in smart
contracts

Desirable Features In Verifiable Databases

Efficiency-related Security-related
o Efficient (prover and verifier) Based on solid cryptographic
. Publicly-verifiable assumptions (of course)
» important to establish trust * Also simple
levels of data traces — easily auditable; easier to
» Non-interactive, and with short reason about
proofs e — |ess vulnerable

e especially important in smart
contracts

Desirable Features In Verifiable Databases

Efficiency-related Security-related
o Efficient (prover and verifier) Based on solid cryptographic
. Publicly-verifiable assumptions (of course)
» important to establish trust * Also simple
levels of data traces — easily auditable; easier to
» Non-interactive, and with short reason about
proofs e — |ess vulnerable
e especially important in smart e — more maintainable; easier to

contracts patch

Common Tradeoffs in Verifiable DB

Common Tradeoffs in Verifiable DB

More/Less Expressive

More/Less Practical

More/Less Simple
& Secure

Common Tradeoffs in Verifiable DB

1. SELECT SuM(l_extendedprice* (1 - |_discount))
2. AS revenue
3. FROM lineitem, part
4. WHERE
. 5.(p_partkey = |_partkey
More/Less Expressive e et
7. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM
PACK’, ‘SM PKG’)
8. AND|_quantity >= 7 AND |_quantity <=7 + 10

' 9. AND p_size BETWEEN 1 AND 5
SI m p I e CO m p I ex 10. AND |_shipmode IN (‘AIR’, ‘AIR REG’)
queries

q u eri eS 1; Oé&ND |_shipinstruct = ‘DELIVER IN PERSON’)

13. (p_partkey = |_partkey

14. AND p_brand = ‘Brand#14’

15. AND p_container IN (‘MED BAG’, ‘MED BOX’,
‘MED PKG’, ‘MED PACK’)

= 16. AND I_qu_antity >= 14 AND |_quantity <= 14 + 10
More/Less Practical 16 A Lauantly >~ 4AND Lqy

More/Less Simple
& Secure

Common Tradeoffs in Verifiable DB

1. SELECT SuM(l_extendedprice* (1 - |_discount))
2. AS revenue
3. FROM lineitem, part
4. WHERE
. 5.(p_partkey = |_partkey
More/Less Expressive e et
7. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM
PACK’, ‘SM PKG’)
8. AND|_quantity >= 7 AND |_quantity <=7 + 10

' 9. AND p_size BETWEEN 1 AND 5
SI m p I e CO m p I ex 10. AND |_shipmode IN (‘AIR’, ‘AIR REG’)
queries

q u eri eS 1; Oé&ND |_shipinstruct = ‘DELIVER IN PERSON’)

13. (p_partkey = |_partkey

(this talk: only “SQL” DBs) 14, AND p_brand = ‘Brand#14

15. AND p_container IN (‘MED BAG’, ‘MED BOX’,
‘MED PKG’, ‘MED PACK”)

= 16. AND I_qu_antity >= 14 AND |_quantity <= 14 + 10
More/Less Practical 16 A Lauantly >~ 4AND Lqy

More/Less Simple
& Secure

Common Tradeoffs in Verifiable DB

More/Less Expressive

simple complex
queries queries

(this talk: only “SQL” DBs)
More/Less Practical

small proofs, ' I slower,

1. SELECT SuM(l_extendedprice* (1 - |_discount))

2. AS revenue

3. FROM lineitem, part

4. WHERE

5.(p_partkey = |_partkey

6. AND p_brand = ‘Brand#41’

7. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM
PACK’, ‘SM PKG’)

8. AND|_quantity >= 7 AND |_quantity <=7 + 10

9. AND p_sSize BETWEEN 1 AND 5

10. AND |_shipmode IN (‘AIR’, ‘AIR REG’)

11. AND |_shipinstruct = ‘DELIVER IN PERSON’)

12. OR

13. (p_partkey = |_partkey

14. AND p_brand = ‘Brand#14’

15. AND p_container IN (‘MED BAG’, ‘MED BOX’,
‘MED PKG’, ‘MED PACK’)

16. AND |_quantity >= 14 AND |_quantity <= 14 + 10

S - T T FTIT YT TTIR

fast prover,... larger proofs

More/Less Simple
& Secure

Common Tradeoffs in Verifiable DB

1. SELECT SuM(l_extendedprice* (1 - |_discount))
2. AS revenue
3. FROM lineitem, part
4. WHERE
. 5.(p_partkey = |_partkey
More/Less Expressive e et
7. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM
PACK’, ‘SM PKG’)
8. AND|_quantity >= 7 AND |_quantity <=7 + 10

' 9. AND p_size BETWEEN 1 AND 5
SI m p I e CO m p I ex 10. AND |_shipmode IN (‘AIR’, ‘AIR REG’)
queries

q u eri eS 1; Oé&ND |_shipinstruct = ‘DELIVER IN PERSON’)

13. (p_partkey = |_partkey

(this talk: only “SQL” DBs) 14, AND p_brand = ‘Brand#14

15. AND p_container IN (‘MED BAG’, ‘MED BOX’,

‘MED PKG’, ‘MED PACK’)
16. AND |_quantity >= 14 AND |_quantity <= 14 + 10

More/Less Practical

small proofs, ' I slower,
fast prover,... larger proofs

More/Less Simple

& Secure . . - .
reliable assumptions, heuristic assumptions,

small tech stack ¢——————————————————————> |ots of moving parts

The existing landscape of
verifiable databases

How do we build verifiable databases?

How do we build verifiable databases?

More traditional notions More fine-grained notions Computational

of integrity —_— of integrity —_— Integrity
(integrity as guarantee of a

data structure satisfying a property)

Sighatures Authenticated General

. Data Structures Cryptographic
Hashing (Merkle Trees, ...) Proofs

How do we build verifiable databases?

VDBs
?/ \”

More traditional notions More fine-grained notions Computational

of integrity —_— of integrity —_— Integrity
(integrity as guarantee of a

data structure satisfying a property)

Sighatures Authenticated General

. Data Structures Cryptographic
Hashing (Merkle Trees, ...) Proofs

How do we build verifiable databases?

VDBs
?/ \”

More traditional notions More fine-grained notions Computational

of integrity —_— of integrity —_— Integrity
(integrity as guarantee of a

data structure satisfying a property)

Sighatures Authenticated General
. Data Structures Cryptographic
Hashing (Merkle Trees, ...) Proofs

DB as object/DS;
result of query as property

How do we build verifiable databases?

VDBs
?/ \”

More traditional notions More fine-grained notions Computational

of integrity —_— of integrity —_— Integrity
(integrity as guarantee of a

data structure satisfying a property)

Sighatures Authenticated General
. Data Structures Cryptographic
Hashing (Merkle Trees, ...) Proofs
DB as object/DS; SQL queries as general

result of query as property computation

How do we build verifiable databases?

In fact, both are used. VDBs ,
And they lead to different tradeoffs ? \
More traditional notions More fine-grai notions Computational
of integrity of integrit —_— Integrity

(integrity as guarantee™Qf a
data structure satisfying a progerty)

Signatures Authenticated General
. Data Structures Cryptographic
Hashing (Merkle Trees, ...) Proofs
DB as object/DS; SQL queries as general

result of query as property computation

The Landscape of Verifiable DBs

Security & Simplicity

EXxpressivity Practicality

The Landscape of Verifiable DBs

Security & Simplicity

Expressivity | Practicality
General proofs & recursion
(Lagrange Labs, Axiom,...)

The Landscape of Verifiable DBs

Security & Simplicity

vSQL

(S&P 2017)
General proofs ®

Expressivity | Practicality
General proofs & recursion
(Lagrange Labs, Axiom,...)

The Landscape of Verifiable DBs

Security & Simplicity

Auth. Data

Structures
(mostly accumulators

vSQL

(S&P 2017)
General proofs

iy

Expressivity ! | Practicality
General proofs & recursion

(Lagrange Labs, Axiom,...)

The Landscape of Verifiable DBs

Security & Simplicity

Auth. Data
200 0[S M2 0} o) P — Structures

(mostly accumulators

vSQL

(S&P 2017)
General proofs

PRI

Expressivity ! | Practicality
General proofs & recursion

(Lagrange Labs, Axiom,...)

The Landscape of Verifiable DBs

Security & Simplicity

Auth. Data
200 0[S M2 0} o) P — Structures

(mostly accumulators

vSQL

(2017) = " (S&P 2017)
General proofs

PRI

Expressivity ! | Practicality
General proofs & recursion

(Lagrange Labs, Axiom,...)

The Landscape of Verifiable DBs

Security & Simplicity

Auth. Data
200 0[S M2 0} o) P — Structures

(mostly accumulators

vSQL

(2017) = " (S&P 2017)
General proofs

PRI

(2023-NOW) reeeesereemsseereemsesremmsssscesss flrnene R
Expressivity

s S
j:;,% - .
_ Practicality
General proofs & recursion
(Lagrange Labs, Axiom,...)

The Landscape of Verifiable DBs

Security & Simplicity

Auth. Data
200 0[S M2 0} o) P — Structures

(mostly accumulators

vSQL

(2017) = " (S&P 2017)
General proofs

(2023-NOW) reeeesereemsseereemsesremmsssscesss flrnene R
Expressivity

_ Practicality
General proofs & recursion
(Lagrange Labs, Axiom,...)

The Landscape of Verifiable DBs

Security & Simplicity

Auth. Data
200 0[S M2 0} o) P — , Structures

(mostly accumulators

(2025) -rovreermmmmmmmmsmmsssss s
vSQL
(2017) e * (S&P 2017)
General proofs
(2023-NOW) reeeesereemsseereemsesremmsssscesss flrnene

Expressivit
P y General proofs & recursion
(Lagrange Labs, Axiom,...)

Practicality

This Talk’s Thesis

This Talk’s Thesis

VDBs can be simple, expressive and efficient

This Talk’s Thesis

VDBs can be simple, expressive and efficient
* New construction for the SQL setting (without SNARKS)

This Talk’s Thesis

VDBs can be simple, expressive and efficient

* New construction for the SQL setting (without SNARKS)
e gedb”

* gedb is a recursive acronym standing for “gedb error-checks databases”.
It Is also a shameless pun on it being a proof system for DBs.

This Talk’s Thesis

VDBs can be simple, expressive and efficient

* New construction for the SQL setting (without SNARKS)
e gedb”
 New techniques

* gedb is a recursive acronym standing for “gedb error-checks databases”.
It Is also a shameless pun on it being a proof system for DBs.

This Talk’s Thesis

VDBs can be simple, expressive and efficient

* New construction for the SQL setting (without SNARKS)
e gedb”

 New techniques

 New foundations

* gedb is a recursive acronym standing for “gedb error-checks databases”.
It Is also a shameless pun on it being a proof system for DBs.

This Talk’s Thesis

VDBs can be simple, expressive and efficient

* New construction for the SQL setting (without SNARKS)
e gedb”

 New techniques

 New foundations

gedb is a joint work with * gedb is a recursive acronym standing for “gedb error-checks databases”.
V. Botta, S. Bottoni, E. Ragnoli, A. Trombetta. It Is also a shameless pun on it being a proof system for DBs.

........
Vg

. \‘Q\

Zooming in on G&n
Solutions

Some Preliminaries on General-Purpose Proofs

Some Preliminaries on General-Purpose Proofs

(~201OS) @@ @

Many advancements | . . . g
(circuits-based) oo

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

Great proof size: < 0.2 KB

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

Great proof size: < 0.2 KB
Great verification time: few ms

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

reat proof size: < 0.2 KB
Great proof size few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

Great proof size: < 0.2 KB
few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

small proofs ' l larger proofs
worse proving better proving

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

Great proof size: < 0.2 KB
few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

small proofs ' l larger proofs

worse proving better proving
*

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

Great proof size: < 0.2 KB
few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

small proofs ' l larger proofs

worse proving better proving
*

Main pain points:

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

reat proof size: < 0.2 KB
Great proof size few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

small proofs ' l larger proofs

worse proving better proving
*

Main pain points:
e prover hard to parallelize + high-memory

Some Preliminaries on General-Purpose Proofs

Ok @
("'201 OS) @ () @
Many advancements | . . . g
(circuits-based) oo

Great proof size: < 0.2 KB
few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

small proofs ' l larger proofs

worse proving better proving
*

Main pain points:
e prover hard to parallelize + high-memory
* developer experience (circuits)

Some Preliminaries on General-Purpose Proofs

Ok @
(~2010s) olof¥o (from ~2022)
Many advancements | .. . From circuits to virtual
(circuits-based) & - i machines
I (through recursion)

Great proof size: < 0.2 KB
few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

small proofs ' l larger proofs

worse proving better proving
*

Main pain points:
e prover hard to parallelize + high-memory
* developer experience (circuits)

Some Preliminaries on General-Purpose Proofs

Ok @
(~2010s) olof¥o (from ~2022)
Many advancements | .. . From circuits to virtual
(circuits-based) & - § machines
I (through recursion)

Great proof size: < 0.2 KB
few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

small proofs ' l larger proofs

worse proving better proving
*

YOO
12222 D
Q|| O |]|lOQ||lC ||l © | ©

Main pain points:
e prover hard to parallelize + high-memory
* developer experience (circuits)

Some Preliminaries on General-Purpose Proofs

Ok @
(~2010s) olof¥o (from ~2022)
Many advancements | .. . From circuits to virtual
(circuits-based) & - § machines
I (through recursion)

reat proof size: < 0.2 KB
Great proof size few 10s of seconds

PR Ty - C)~ Pos —
+ J Great verification time: few my with GPU % S rom
L . (3 (o)—
OK proving time: e.g., ~ 2 minutes C = (Poe —
to prove SHA256 of a 15KB file (C T)D:
smallproofs o larger proofs pa;eilglél /’
Wworse proving better proving proving

*

Main pain points:
e prover hard to parallelize + high-memory
* developer experience (circuits)

Some Preliminaries on General-Purpose Proofs

@ @
("'201 OS) @@ @
Many advancements | . . . i
(circuits-based) oo

Great proof size: < 0.2 KB
few 10s of seconds

Great verification time: few my with GPU

OK proving time: e.g., ~ 2 minutes
to prove SHA256 of a 15KB file

small proofs ' l larger proofs

worse proving better proving
*

Main pain points:
e prover hard to parallelize + high-memory
* developer experience (circuits)

(from ~2022)

From circuits to virtual
machines
(through recursion)

YOO
12222 D
Q|| O |]|lOQ||lC ||l © | ©

a0 1 0, 1
Lo) : 0
1 a 1
0 '7):.: Iu)
0] 0 0 (
0 0 0 0
0 0 0 0
0))
0 0
= 0 ap*
I ’ /

proving

final
proof

Some Preliminaries on General-Purpose Proofs

Ok @
(~2010s) olof¥o (from ~2022)
Many advancements | .. . From circuits to virtual
(circuits-based) & - § machines
I (through recursion)

Great proof size: < 0.2 KB
few 10s of seconds

Great verification time: few my with GPU

final

OK proving time: e.g., ~ 2 minutes —
to prove SHA256 of a 15KB file

proof
small proofs , larger proofs parallel / >
worse proving better proving oroving recursion

* (proving
proofs)

YOO
12222 D
Q|| O |]|lOQ||lC ||l © | ©

Main pain points:
e prover hard to parallelize + high-memory
* developer experience (circuits)

Some Preliminaries on General-Purpose Proofs

Ok @
(~2010s) olof¥o (from ~2022)
Many advancements | .. . From circuits to virtual
(circuits-based) & - § machines
I (through recursion)

Great proof size: < 0.2 KB

few 10s of seconds IS
PIPT T - (B8 Ess y—s(Powr)—s
+ J Great verification time: few my with GPU G |
: : . (afteiifeis 1 y—(_ Poer)— __,final
OK proving time: e.g., ~ 2 minutes GRITE E D~ poer)— proof
to prove SHA256 of a 15KB file race of aprogram | Qi D-Co)
maVM\/’(:;’ ;) Poer — >
small proofs ' \ larger proofs paraIIeI / |
worse proving better proving oroving recursion
* (proving

f
Main pain points: proofs)

e prover hard to parallelize + high-memory
* developer experience (circuits)

Some Preliminaries on General-Purpose Proofs

Ok @
(~2010s) olof¥o (from ~2022)
Many advancements | .. . From circuits to virtual
(circuits-based) & - § machines
I (through recursion)

Great proof size: < 0.2 KB

few 10s of seconds s ot pos 81
TP T - (S itie e dzie y—(Poer)
+ J Great verification time: few my with GPU G oo |
: : . (et D= (o=)— __final
OK proving time: e.g., ~ 2 minutes C D= Poe — proof
to prove SHA256 of a 15KB file trace of a pragram i e
P naVM___ 7 (s)—(Poe)— >
small proofs ' l larger proofs parallel / |
worse proving better proving oroving recursion
* (proving

: : : proofs)
Main pain points:

e prover hard to parallelize + high-memory Because of the VM trace, developers can just write code
* developer experience (circuits) (e.g., Rust) that gets compiled to the VM (instead of circuits)

vSQL

[IEEE S&P 2017]

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting

» [for the cryptographers: essentially “GKR specialized to DBs’]

Output (result)

Input (database)

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting () ()

» [for the cryptographers: essentially “GKR specialized to DBs’] @ (x) GP
* At the time, this was a big improvement on the proving performance of other

solutions [e.g. Groth16] @ g g

Output (result)

Input (database)

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting (x) =)

» [for the cryptographers: essentially “GKR specialized to DBs’] @ (x) GP
* At the time, this was a big improvement on the proving performance of other

solutions [e.g. Groth16] @ 3
* vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])) é) g

Output (result)

Input (database)

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting (x) =)

» [for the cryptographers: essentially “GKR specialized to DBs’] @ (x) GP
* At the time, this was a big improvement on the proving performance of other

solutions [e.g. Groth16] @ 3
* vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])) é) g

* Drawbacks:

Output (result)

Input (database)

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting (%))

» [for the cryptographers: essentially “GKR specialized to DBs’] GP (x) @
* At the time, this was a big improvement on the proving performance of other

solutions [e.g. Groth16] @ g g

Output (result)

* vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST]) - .
 Drawbacks: Ol

» Requires implementing circuits emulating SQL Input (database)

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting (%))

» [for the cryptographers: essentially “GKR specialized to DBs’] GP (x) @
* At the time, this was a big improvement on the proving performance of other

solutions [e.g. Groth16] @ g g

Output (result)

* vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST]) - |
» Drawbacks: OF
* Requires implementing circuits emulating SQL N

* Not great for developer experience

Input (database)

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting ())

» [for the cryptographers: essentially “GKR specialized to DBs’] GP (x) GP
* At the time, this was a big improvement on the proving performance of other

solutions [e.g. Groth16] @ g g

Output (result)

* vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST]) - |
» Drawbacks: OR
* Requires implementing circuits emulating SQL N

* Not great for developer experience

* Also cumbersome: a naive set intersection in a circuit has a quadratic
overhead

Input (database)

vSQL

[IEEE S&P 2017]

 Key observation of vSQL.:

* to save on proving time, use a “lightweight” general-purpose proof system
(based on circuits) and customize it a little bit to the DB setting ())

» [for the cryptographers: essentially “GKR specialized to DBs’] GP () @
* At the time, this was a big improvement on the proving performance of other

Output (result)

solutions [e.g. Groth16] o
* vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST]) g@ """ g
* Drawbacks:
* Requires implementing circuits emulating SQL
* Not great for developer experience

* Also cumbersome: a naive set intersection in a circuit has a quadratic
overhead

* Relatively large proof size (100s of KB); other performance limitations

Input (database)

|

8 1 8 0'10 0
0 0 1 50 0
00089 ag 0l0c0
1 1 0 1
000 19108 ;08 ;1010 C Prover }—»
(?‘f? 10 i3r) o oif O &1
07]00001”000‘ Y]g]ﬁ' \
051 010,01 1 -
C 081710011201 515 C roer
101951979001 ,2 1V 0 7.
[Executor }—> 0 1? 09,900 e 1 : Prover \ >
0 1,0,00 0 ?Cl) 0 y O /
T T ™1 07 . j
1 0] - 1]: 0
C 0) n o (']:] O“:'l ﬁ : (Prover) >
YT ! o o O ons '
. L 0 L °0 y
17637 08! 2113 OF, N\
C 0y o1y 191 Soud .})——»C Prover)
0 ‘O 0 0 \
(0 0 o o)—»(Prover)
0 0 0
0 0 0 0 L;O‘
‘ 0
0% ¢
Execution RISC-V Proving

[Image credit: RiscZero]

Recursion
circuit

Recursion
circuit
X

Recursion
circuit

I S

r—_>

Recursnon
circuit

HH

Recursion
CIrCUI'[

Aggregation Proving

The approach from SNARKs&Recursion

disau Groth16
M o
STARK-to-SNARK
Proving

]

8 1 8 0'10 0
0 0 50 0
ot-$ogtitad Sloss
1 1 0 1
000 19108 ;08 ;1010 C Prover }—»
C?‘f? 10 i3r) o oif O &1
07]00001”000‘ Y]g]ﬁ' \
051 010,01 1 -
C 021110917521 o]0 rover
101951979001 ,2 1V 0 7.
[Executor }—> 0 1? 09,900 e 1 } Prover \ >
0 1,0,00 0 ?Cl) 0 y O /
e oteoT e n o])
i ,]\ 3 0 Vagoy 15 o9 (Prover
JL ! o o O ons '
T 1p0 05,04 %0 q N
- 0o '0 0 0
C 0 0! 016 :)——»C Prover)
0 ‘O 0 0 \
(0 0 o o)—»(Prover)
0 0 0
0 0 0 0 L;O‘
‘ 0
03 o
Execution RISC-V Proving

[Image credit: RiscZero]

Recursion
circuit

Recursion
circuit
X

Recursion
circuit

I S

r—_>

Recursnon
circuit

HH

€ »lagrange

The approach from SNARKs&Recursion

Recursion
CIrCUI'[

Grothl16
circuit

~0

Aggregation Proving

ﬂ_’

STARK-to-SNARK
Proving

The approach from SNARKs&Recursion —

0 0 0 0
2 80;8:_.: & gfg 20
oS T 1Coii 80?0f1°1 . Reoeipt
(g rsistoitots Y Poer }— WRﬁﬁ?”F*
1.1 o011 103 1 pus
0115000 1000 1 701011 < oover s h I Recursnon recet Recursnon Hce Groth16
0 0] o
11007 110% 11807 51! J ,—_, circuit CII’CUI'[circuit
e 1“\’0'1 oT U o~ — . Recebt
[Executor }—»(01129091 %00 DEERR)—»(Prover > > RGQUFSIOH
SABEETH e circuit
(] (;) (1\ | n: -| 5 (1) : i ‘D—’ (Prover >_’ =
J1L . >~ 10 o. 0 o0nd) N
13509191311 0% 0 i recept
C 0, ot Tod Bays HC Prover) Recursion ey J
— - ‘ < circuit
0 0
C 0 0 0! o)—»C Prover) e
0 0 0
0 0 0 0 000
0 : 0
Execution RISC-V Proving Aggregation Proving STARK-t0-SNARK

Proving

just execution

[Image credit: RiscZero]

The approach from SNARKs&Recursion —

0 3 0 »0 0
20 5040 109 01848 ==
o536~ : Receipt
050 1070} 901 91500 Prover Recursion e
Sih 1ot oo o S circuit
0315000 1700 9110 1] o P Recursuon rRcest Recursnon Hpcept Groth16
17007 110% 11 %0161 o} rover r—\—> circuit ClI’CUIt circuit
1951077001 ,9 17 0 ¢ : Receipt
[Executor }—»(01122007 %0g DEERR >—>< Prover RGC_?UFS]Oﬂ
e circuit
C LS o) - X 1)—»C Prover —’
o1 o0 Ty o . Receipt
(0 ;¢ 1018218 P)—>< Prover Recursion R)
e ' circuit
0 0)
C 0 0 0 8)—»(Prover e
0) 0
0 0 0 0 000
0 : 0
Execution RISC-V Proving Aggregation Proving STARK-to-SNARK

Proving

just execution light-weight [STARK] prover
for “base” proofs and recursion

[Image credit: RiscZero]

The approach from SNARKs&Recursion e

Recursion
circuit

— O = 0|0 O
N
U
@)
5

: > RecurS|on Receipt Recursmn Receipt Groth16
,—_, circuit CII’CUIt circuit
Receipt

Recursion
circuit

[Executor }—»

o
| - - OO0k ==0D =
OO0 wwphbOO~goOoOo

§
N
3
5

Recursion
circuit

R S

OCAAQQQQ
F OO~ ~0O~@OOC
eoNe D et ek O - w b OO0 4000
O - OO0 = =~0O0OHOO0OO0
(e Ne o (V=T =
™ - OO0 et
L

Execution RISC-V Proving Aggregation Proving STARK-to-SNARK
' Proving
just execution . - e T . .
) light-weight [STARK] prover More expensive proving
for “base” proofs and recursion with very short proofs

[Image credit: RiscZero]

The approach from SNARKs&Recursion e

although “lightweight” still requires

/ tens-hundreds of GPU

L0 :

i i 1 R t

50! T iR 010 >_, '[Reoursmn}_' e

1 1 v 1 0 , 0 : 0) —_— . .

el 1 2 1 s L CerUIt

116000 15001 0510 1 C N | = RecurS|on recet Recursmn Hce Groth16
°olo1 771300 5 111113 Prover = \

01.391:0 10! J r—\—> circuit CII’CUIt circuit
((])I v U: . Receipt

105191 > N ‘ Rec_urs.lton}

i circui

oNe — O - 0O|]O O
ol o)
O -
-0 OO
Y
g
@
=

[Executor }—»

- = - —-lo o =
> - 400 =jlm—-0Op=0¢O
b - olo =
i : -op =
O =4 w00 = 0P -—-00QO
- o o

F - 0O ~ o~¢®o0C
eNe D etk B O - -~ O OO0
-
el i -

0 |)_>< Prover) Recursion i
‘ o circuit
. 8)—»(Prover > —
Execution RISC-V Proving Aggregation Proving STARK-to-SNARK
' Proving
just execution . - e T . .
J light-weight [STARK] prover | More expensive proving
for “base” proofs and recursion with very short proofs

[Image credit: RiscZero]

The approach from SNARKs&Recursion e

although “lightweight” still requires

/ tens-hundreds of GPU

T

Receipt > . Receipt
>_.< Prover _’[e i_.
Receint irculi
- . ewpw | > RecurS|on HeceR! Recur3|on Heceipt Groth16
rover i — circuit circuit circuit
Receipt

[Executor é 10 \ . | Recursion s
0vera|l expresswe and efficient schemes
(if one can put in the resources)
Execution RISC-V Proving Aggregation Proving STARK-to-SNARK
Proving
Just execution light-weight [STARK] prover More expensive proving
for “base” proofs and recursion with very short proofs

[Image credit: RiscZero]

Drawback: Complexity

LI 0o, 0)
20 0% 0: 193 0i00 0 p—— oot
U,'1ol;0"?o:101 > . eceip
<3§8 Lrlgh s 1018 F—=>(Prover R Recursion |
AT AT Y —|_ oreut . J=| Recursion feceint Recursion Rocelpt Groth16
0010179100, 117517 Prover . . .
11007 41021 ,3%1°01 0} —y—»| circuit circuit circuit
40T 1032001 107 T o U > . Receipt
Executor }—» Gy 0 e oot 9 >—> Prover Recursion |
c1) (: (1) 0 : ? °,x () > circuit
0 0 1 ~——
C} 00191 001 gf‘ } Prover —
0 o, 33 0 o (N
0 o 1 2 - . R t
(o1gf torgei !)—»(Prover) > > Recursion | [P]
— circuit
C o0, o o o >—> Prover S —
0 o 0
0 0 0 0 00
0 ¢ 0
Execution RISC-V Proving Aggregation Proving STARK-to-SNARK

Proving

Drawback: Complexity

coo

1 20 0
20 5350; 198 0l030 ——— (o]
Ty SOy SO o > . eceip
131 0011 395 07,1 50 > - - . -
0,150001%090) 3010 1} — —| Recursion Racet Recursion fecon Groth16
Oelor1{li00y 5,111 1¢ Prover re 2 i o
11007 ,10% 1. 39101 0] —y—»| circuit circuit circurt
1079 10 20 700 1l 3> : Receipt
[Executor }—»C& 1290912000303 })——» Recursion | | 1
00110.0i1 10880 ol gf » circuit
C —
00 90300 o : —
e tta-irforfdooriad (o) |Recept
(o1gf torgei !)—»(Prover) > > Recursion | [P J
'. ‘ circuit
0 (o)
G (e > — |
0 o ‘ \
0 0 0 0 000
o The final
| | proof system
Execution RISC-V Proving Aggregation Proving STARK-to-SNARK

Proving

Drawback: Complexity

0 0 s0 O
23 8035 10081810 — ==
i T3 b 0 I; o (]J 071 T > : eceip
(e iz idieis y—>(_ Powr)— | Mt [
11 o —i0 : L. > : Receipt : Receipt
Cg‘,;g??gl 000} 310l ~——— Recursion Recursion Groth16
1100, 110511801 0] > - —)y—»| circuit circuit circuit
+ T 8o o ol . U \var » . i
[Executor }—»CJ, 180001 80553051 7! >_, *| Recursion | Receipt Y
0°017,0,001 079, o) > CerL"t
T 00 Y00 151 1y, -
i ° .0 o 1 e
) 0o j °0 ~ . i
(1 5o)& toresn »)—»(Prover) > > Recursion | dsas)
i 3 circuit
C i i-Co— — ~
0 o \(
o © 0 00 \
0i t ° :
The final
‘ | proof system
Execution RISC-V Proving Aggregation Proving STARK-to-SNARK

Proving

Very complex tech stack.

Hard to analyze, maintain, audit.

Extra Security Concerns

Drawback

Drawback: Extra Security Concerns £

o Security concern 1: complexity itself

Drawback: Extra Security Concerns £

o Security concern 1: complexity itself

 More building blocks and layers — More bugs that are harder to spot

Drawback: Extra Security Concerns £

o Security concern 1: complexity itself
 More building blocks and layers — More bugs that are harder to spot

e Security concern 2: cryptographic “hygiene” and assumptions

Drawback: Extra Security Concerns £

o Security concern 1: complexity itself
 More building blocks and layers — More bugs that are harder to spot
e Security concern 2: cryptographic “hygiene” and assumptions

* Recursion depth?

Drawback: Extra Security Concerns &£

o Security concern 1: complexity itself

 More building blocks and layers — More bugs that are harder to spot
e Security concern 2: cryptographic “hygiene” and assumptions

* Recursion depth?

* Conjectures?

Drawback: Extra Security Concerns &£

o Security concern 1: complexity itself

 More building blocks and layers — More bugs that are harder to spot
e Security concern 2: cryptographic “hygiene” and assumptions

* Recursion depth?

e Conjectures?

e Random Oracle “as circuit”?

Final Drawback: '
\

Final Drawback:

Final Drawback:

Is this the right way of “shaving” away the problem of Verifiable SQL?

’

- \
General-purpose solutions—Summary

»

- \
General-purpose solutions—Summary

* Extremely expressive v

Nl

i
0:1' =y foq

General-purpose solutions—Summary

A}
s

A
&
A

* Extremely expressive v
* Can be very efficient v/

.......

oy QS H
ifiimi]S V2N
[VT H

Nl

M
Le

\Y
Y
&

3

" X

General-purpose solutions—Summary

tb’

* Extremely expressive v
* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)

........

Nl

1
Tadt Hpeec-lll
Q‘ - ,\ ifiz

General-purpose solutions—Summary

A

&

A
o

A}
s

* Extremely expressive v

* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)
* short proof size / small verification cost

........

General-purpose solutions—Summary

A}
s

Ay
Y

A
e

0 .qufy :r -

. 0 /
< ‘ ’ T35y
i N 2N
-) Q[

* Extremely expressive v

* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)
* short proof size / small verification cost

 Sledgehammer approach to verifiable SQL X

........

Nl

General-purpose solutions—Summary \ &

* Extremely expressive v

* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)

* short proof size / small verification cost

 Sledgehammer approach to verifiable SQL X
« Extremely complex tech stack X

........

i

\Y
Y
&

\

" X

: Nl
General-purpose solutions—Summary

Y

* Extremely expressive v

* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)
* short proof size / small verification cost

 Sledgehammer approach to verifiable SQL X
« Extremely complex tech stack X
» Hard to analyze and audit X

........

Nl

-9

\Y
Y
&

\

" X

General-purpose solutions—Summary

tb’

* Extremely expressive v

* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)
* short proof size / small verification cost

 Sledgehammer approach to verifiable SQL X

« Extremely complex tech stack X

» Hard to analyze and audit X

» Suboptimal developer experience (especially if requires writing circuits) X

Nl

-9

Ay
Y
A
e

A LLITT
tb’ f.’::)y . r/

General-purpose solutions—Summary

A}
s

* Extremely expressive v

* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)
* short proof size / small verification cost

 Sledgehammer approach to verifiable SQL X

« Extremely complex tech stack X

» Hard to analyze and audit X

» Suboptimal developer experience (especially if requires writing circuits) X

» Additional security risks (both from complexity and cryptographic heuristics) X

Nl

-9

Ay
&
A
e

A LI
tb’ f.’::)y . r/

General-purpose solutions—Summary

A}
s

* Extremely expressive v

* Can be very efficient v/
» fast proving time (with the right number of GPU and investment)
* short proof size / small verification cost

 Sledgehammer approach to verifiable SQL X

« Extremely complex tech stack X

» Hard to analyze and audit X

» Suboptimal developer experience (especially if requires writing circuits) X

» Additional security risks (both from complexity and cryptographic heuristics) X

My claim: we may want to explore alternative approaches for verifiable SQL.

Verifiable DBs from
Authenticated Data Structures

Let’s talk about é/ to then get to

Quick Slide on Advancements in ADS eV

Quick Slide on Advancements in ADS eV

Recall:

Quick Slide on Advancements in ADS eV

Recall:
accumulators:
can provey € §

Quick Slide on Advancements in ADS eV

Recall:
accumulators:
can provey € §

-at times, can also prove set relations S C T, RUS =T, ...

Quick Slide on Advancements in ADS eV

Recall:
accumulators:
can provey € §

-at times, can also prove set relations S C T, RUS =T, ...
vector commitments:

can prove (Y, Yy, .-+, Yp) = <‘_}[j])jEJ

Quick Slide on Advancements in ADS eV

Recall:
accumulators:
can provey € §

-at times, can also prove set relations S C T, RUS =T, ...
vector commitments:

can prove (yla)72, R yf) — (‘—}[]] >j€J
‘polynomial commitments:
can prove f(x) =y

Quick Slide on Advancements in ADS eV

Recall:
accumulators:
can provey € §

-at times, can also prove set relations S C T, RUS =T, ...
vector commitments:

can prove (yla)72, R yf) — (‘—}[]] >j€J
‘polynomial commitments:
can prove f(x) =y

Standard construction:
Merkle Trees (from hashing)

H

C G

has logarithmic-sized proof

== - >
il HGs) - (oo
Il Hew) — 8
- - [

Quick Slide on Advancements in ADS eV

Recall:
accumulators:
can provey € §

-at times, can also prove set relations S C T, RUS =T, ...
vector commitments:

can prove (yla)72, R yf) — (‘—}[]] >j€J
‘polynomial commitments:
can prove f(x) =y

Standard construction: Many advancements (2010s)
Merkle Trees (from hashing) from elliptic curves [pairings]

H

C G

has logarithmic-sized proof

== - >
il HGs) - (oo
Il Hew) — 8
- - [

Quick Slide on Advancements in ADS eV

Recall:
accumulators:
can provey € §

-at times, can also prove set relations S C T, RUS =T, ...
vector commitments:

can prove (yla)72, R yf) — (‘—}[]] >j€J
‘polynomial commitments:
can prove f(x) =y

Standard construction: Many advancements (2010s)
Merkle Trees (from hashing) from elliptic curves [pairings]
c c accumulators, vector and
x ® ® ® has logarithmic-sized proof polynomial commitments

¢ & 9 9 with O(1) sized proofs.

Verifiable DBs from ADS (state of the art) ev

IntegriDB (CCS 2015)

Verifiable DBs from ADS (state of the art) ev

IntegriDB (CCS 2015)

Improves on the state of the art on
ADS-based verifiable DBs:

e combines simple hash-based auth. interval trees
with modern accumulators (from elliptic curves)

Verifiable DBs from ADS (state of the art) &

IntegriDB (CCS 2015)

Improves on the state of the art on
ADS-based verifiable DBs:

e combines simple hash-based auth. interval trees
with modern accumulators (from elliptic curves)

Join Multidim | Functions Nest.ed Update
range queries
Tree-based | YPPKoc x x x x v
Signature-based | PZMoc x x x x x
Multi-range [PPT1 x v x x x
IntegriDB v v v v 4

Table by Yupeng Zhang (from IntegriDB presentation @ ACM CCS 2015).

Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

1. SELECT suUM(l_extendedprice* (1 - |_discount))

Improves on the state of the art on 3. Prov Ineftem, part
ADS-based verifiable DBs: . p_partkey =|_perkey

6. AND p_brand = ‘Brand#41’
7. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM

e combines simple hash-based auth. interval trees PACK’, ‘SM PKG)

8. AND|_quantity >=7 AND |_quantity <=7 + 10

with modern accumulators (from elliptic curves) 00 Ax0]| Bodemoccs T CAIR" '8
p 10. AND |_shipmode IN (‘AIR’, ‘AIR REG’)
11. AND |_shipinstruct = ‘DELIVER IN PERSON’)
12. OR
13. (p_partkey = |_partkey
14. AND p_brand = ‘Brand#14’
15. AND p_container IN (‘MED BAG’, ‘MED BOX’,
‘MED PKG’, ‘MED PACK”)
o * 3 o 16. AND |_quantity >= 14 AND |_quantity <= 14 + 10
Jolin Mllltldlm Functions 17. AND p_size BETWEEN 1 AND 10
range 18. AND|_shipmode IN (‘AIR’, ‘AIR REG’)
19. AND |_shipinstruct = ‘DELIVER IN PERSON’)
20. OR
21. (p_partkey = |_partkey
22. AND p_brand = ‘Brand#23’
23. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG
PACK’, ‘LG PKG’)
S 24. AND |_quantity >= 25 AND |_quantity <= 25 + 10
25. AND p_size BETWEEN 1 AND 15

Multi-range [P .
26. AND |_shipmode IN (‘AIR’, ‘AIR REG’)
InteriDB v v v 27. AND |_shipinstruct = ‘DELIVER IN PERSON’);

Tree-based | YPPKo¢

Signature-based | PZMoc

| X | X
x
| x| %

Figure 6: Query #19 of the TPC-H benchmark.

Table by Yupeng Zhang (from IntegriDB presentation @ ACM vuo cui10).

Verifiable DBs from ADS (state of the art) ev

IntegriDB (CCS 2015)

18,
acc({1,2,3,4})
18,
acc({1,4})

Verifiable DBs from ADS (state of the art) ev

IntegriDB (CCS 2015)

Techniques In a nutshell:

18,
acc({1,2,3,4})
18,
acc({1,4})

Verifiable DBs from ADS (state of the art) ev

IntegriDB (CCS 2015)

Techniques In a nutshell:

* “collapses” sets of rows with specific intervals properties
(via accumulators)

e combines accumulators and authenticated interval trees
* proves OR/AND via set relation proofs

18,
acc({1,2,3,4})
18,
acc({1,4})

Pain Points of the State of the Art g/

(pain points of IntegriDB)

Pain Points of the State of the Art é/

(pain points of IntegriDB)

I
I rnni SIze Is large

Pain Points of the State of the Art

(pain points of IntegriDB)

_ Can easily ge

P .I — / Grows with D
F001 9126 ...

3 size.

' 10 hundreds of KB.

Pain Points of the State of the Art

(pain points of IntegriDB)

_ Can easily ge

P .I — / Grows with D
F001 9126 ...

High computational requirements
St (Proving and preprocessing)

3 size.

' 10 hundreds of KB.

Pain Points of the State of the Art

(pain points of IntegriDB)

_ Can easily ge

P .I — / Grows with D
F001 9126 ...

High computational requirements
St (Proving and preprocessing)

3 size.

/‘ Very memory intensive

' 10 hundreds of KB.

Pain Points of the State of the Art

(pain points of IntegriDB)

_ Can easily get to hundreds of KB.

P .I — / Grows with DB size.
FO01 9126 ...
/— Very memory intensive

High computational requirements I'heir techniques inherently

[. . entail a quadratic overhead
gt (proving and preprocessing) in order to support JOINs

N

Pain Points of the State of the Art

(pain points of IntegriDB)

_ Can easily get to hundreds of KB.

P .I — / Grows with DB size.
FO01 9126 ...
/— Very memory intensive

High computational requirements I'heir techniques inherently

. . entall a quadratic overhead
R (proving and preprocessing) iNn order to support JOINS

N

Constrained expressivity
and succinctness

Pain Points of the State of the Art

(pain points of IntegriDB)

_ Can easily get to hundreds of KB.

P .I — / Grows with DB size.
FO01 9126 ...
/— Very memory intensive

High computational requirements I'heir techniques inherently

. . entall a quadratic overhead
R (proving and preprocessing) iNn order to support JOINS

N

____E.g., doesn’t support
— comparison among columns
Constrained expressivity

and succinctness

Pain Points of the State of the Art

(pain points of IntegriDB)

_ Can easily get to hundreds of KB.

P .I — / Grows with DB size.
FO01 9126 ...
/— Very memory intensive

High computational requirements I'heir techniques inherently

. . entall a quadratic overhead
R (proving and preprocessing) iNn order to support JOINS

N

h,,_— 0 —__E.g., doesn't support
ARSI, — comparison among columns
—Y JV\ S— Constrained expressivity
SELECHCERQM 3 WHERE and succinctness Proof size/verification grows with

\ # of duplicated elements Iin response

e

limitations

Core Thesis of gedb

It Is possible to design Verifiable DBs that are:

* highly efficient
* highly expressive

* from simple building blocks

Core Thesis of gedb

It Is possible to design Verifiable DBs that are:

/ — First scheme with proof size independent of |DB]

* highly efficient

* highly expressive

* from simple building blocks

Core Thesis of gedb

It Is possible to design Verifiable DBs that are:

— First scheme with proof size independent of |DB|

/ — Can generate a proof in seconds on a

° hlghly efﬁCient / common laptop (for a 1M-sized DB)

* highly expressive

* from simple building blocks

Core Thesis of gedb

It Is possible to design Verifiable DBs that are:

— First scheme with proof size independent of |DB|

/ — Can generate a proof in seconds on a

° h|gh|y efﬁCient ;/ common laptop (for a 1M-sized DB)
\ No quadratic behavior for JOINs

(through new techniques)

* highly expressive

* from simple building blocks

Core Thesis of gedb

It Is possible to design Verifiable DBs that are:

— First scheme with proof size independent of |DB|

/ — Can generate a proof in seconds on a

° h|gh|y efﬁCient ;/ common laptop (for a 1M-sized DB)
\ No quadratic behavior for JOINs

(through new techniques)

\ More expressive than IntegriBD

and with none of the constraints

* from Simple bUIIdlng blocks (through new techniques)

* highly expressive «

Core Thesis of gedb

It Is possible to design Verifiable DBs that are:

— First scheme with proof size independent of |DB|

/ — Can generate a proof in seconds on a

° h|gh|y efﬁCient ;/ common laptop (for a 1M-sized DB)
\ No quadratic behavior for JOINs

(through new techniques)

\ More expressive than IntegriBD

and with none of the constraints

* from Simple bUIIdlng blocks (through new techniques)

No general-purpose SNARKS.
/ Instead: specialized vector
commitments and accumulators

* highly expressive «

Zooming in on Efficiency
Asymptotics

Scheme

IntegriDB [85]
vSQL [84]

This work
(NB: commonly |resp| < |column| < |db|; for aggregate queries, |qry| = |resp|, else |qry| < [resp|).

Zooming in on Efficiency

Asymptotics
Scheme Overhead in 7|, Viime
(queries w/o JOINSs)
IntegriDB [85] log(|column|)
vSQL [84] polylog|db|
This work lqry|

(NB: commonly |resp| < |column| < |db|; for aggregate queries, |qry| = |resp|, else |qry| < [resp|).

Zooming in on Efficiency
Asymptotics

Scheme Overhead in 7|, Viime Overhead in |7|, Viime
(queries w/o JOINSs) (JOINSs)
IntegriDB [85] log(|columnl) resp| - log [column|
vSQL [84] polylog|db polylog|db|
This work lqry| resp|

(NB: commonly |resp| < |column| < |db|; for aggregate queries, |qry| = |resp|, else |qry| < [resp|).

Zooming in on Efficiency
Asymptotics

Scheme Overhead in 7|, Viime Overhead in |7|, Viime Preprocessing &
(queries w/o JOINSs) (JOINSs) server storage
IntegriDB [85] log(|columnl) resp| - log [column| db| + n2,,.
vSQL [84] polylog|db polylog|db| db|
This work lqry| resp| db|

(NB: commonly |resp| < |column| < |db|; for aggregate queries, |qry| = |resp|, else |qry| < [resp|).

Zooming in on Efficiency

Preliminary Experimental Evaluation (DB with 100K rows)

Qrot @ SELECT SUM(price) FROM Transaction
WHERE account_id = '5938' AND trade_date = '2025-01-01'

- Computes total price of transactions executed by an account on a given date

Q CntTx SELECT COUNT(*) FROM Transaction
WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31'

T Computes the number of transactions executed within the first quarter

QMatchexp W SELECT tx_id, price, expected_price, price = expected_price
FROM Transaction WHERE trade_date = '2025-04-05'

T Retrieves the transactions whose executed price equals their expected price

Zooming in on Efficiency

Preliminary Experimental Evaluation (DB with 100K rows)

Query Prover Time Verifier Time Proof Size
Q1or ® 1.21 s 13.00 ms 0.66 KB
QcntTx 15.59 s 21.81 ms 5.13 KB
MatchExp B 6.15 s 25.17 ms 0.98 KB

Qrot @ SELECT SUM(price) FROM Transaction
WHERE account_id = '5938' AND trade_date = '2025-01-01'

- Computes total price of transactions executed by an account on a given date

QcntTx SELECT COUNT(*) FROM Transaction
WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31'

T Computes the number of transactions executed within the first quarter

QMatchExp B SELECT tx_id, price, expected_price, price = expected_price
FROM Transaction WHERE trade_date = '2025-04-05'

T Retrieves the transactions whose executed price equals their expected price

Zooming in on Efficiency

Preliminary Experimental Evaluation (DB with 100K rows)

Query Prover Time Verifier Time Proof Size
Qtor @ 1.21 s 13.00 ms 0.66 KB
(QMatchExp E 6.15 s 25.17 ms 0.98 KB “—~
Qror @ SELECT SUM(price) FROM Transaction
WHERE account_id = '5938' AND trade_date = '2025-01-01'
- Computes total price of transactions executed by an account on a given date /
QCnth SELECT COUNT(*) FROM Tra.n.sa.Ction 5X Sma”er than
WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31' IntegriDB’s

T Computes the number of transactions executed within the first quarter

QMatchExp B SELECT tx_id, price, expected_price, price = expected_price
FROM Transaction WHERE trade_date = '2025-04-05'

T Retrieves the transactions whose executed price equals their expected price

Zooming in on Efficiency

Preliminary Experimental Evaluation (DB with 100K rows)
- ————__ One order of magnitude

smaller than IntegriDB’s

v

Query Prover Time Verifier Time Proof Size
Qtor @ 1.21 s 13.00 ms 0.66 KB
(QMatchExp E 6.15 s 25.17 ms 0.98 KB “—~
Qror @ SELECT SUM(price) FROM Transaction
WHERE account_id = '5938' AND trade_date = '2025-01-01'
- Computes total price of transactions executed by an account on a given date /
QCnth SELECT COUNT(*) FROM Tra.n.sa.Ction 5X Sma”er than
WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31' IntegriDB’s

T Computes the number of transactions executed within the first quarter

QMatchExp B SELECT tx_id, price, expected_price, price = expected_price
FROM Transaction WHERE trade_date = '2025-04-05'

T Retrieves the transactions whose executed price equals their expected price

Zooming in on Efficiency

Preliminary Experimental Evaluation (DB with 100K rows)
- ————__ One order of magnitude

smaller than IntegriDB’s

v
Query Prover Time Verifier Time Proof Size
Qtor @ 1.21 s 13.00 ms 0.66 KB
QcntTx 15.59 s 21.81 ms 5.13 KB
(QMatchExp E 6.15 s 25.17 ms 0.98 KB “—~
| Qrot @ SELECT SUM(price) FROM Transaction
WHERE account_id = '5938' AND trade_date = '2025-01-01'
Large time / proof size
due to naive implementation - Computes total price of transactions executed by an account on a given date
of a range proof
subprotocol SELECT COUNT(*) FROM Transaction &x smaller than

QCnth | |

QMatchExp] | |

WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31'

T Computes the number of transactions executed within the first quarter

SELECT tx_id, price, expected_price, price = expected_price
FROM Transaction WHERE trade_date = '2025-04-05'

T Retrieves the transactions whose executed price equals their expected price

IntegriDB’s

Zooming In on Expressivity

Zooming In on Expressivity

s

IntegriDB supports:

Predicate types: Multi-dim. range queries, list membership, any AND/OR.
\/ Aggregate queries: MAX, MIN, COUNT, SUM, AVG.
*

JOINSs: Equality-based joins over columns, possibly with duplicates.

* Not always supported succinctly: loses succinct proof in case of duplicate elements.

Zooming In on Expressivity

'8

IntegriDB supports:

Predicate types: Multi-dim. range queries, list membership, any AND/OR.
K/ Aggregate queries: MAX, MIN, COUNT, SUM, AVG. J |
*

JOINSs: Equality-based joins over columns, possibly with duplicates.

Comparison between columns: Predicates involving more than one column
(e.g. “|...] WHERE c1 > 2¢2 + ¢3”).

Aggregation among columns: Expressions involving more than one column in
the SELECT clause (e.g. “SELECT c¢;1 + 2c2 FROM [...]”).

* Not always supported succinctly: loses succinct proof in case of duplicate elements.

gedb supports:

_/

Zooming in on Simplici

A First Lens—Tech Stacks

Zooming in on Simplicity
A First Lens—Tech Stacks

|
74
e
~xum e e———

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

Zooming in on Simplicity
A First Lens—Tech Stacks

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

~ B
A good B.Sc. student can
code this easily

Protocol “Atoms” and
Their Composition

KZG

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

~ B
A good B.Sc. student can
code this easily

Protocol “Atoms” and
Their Composition

KZG

Groth16

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

! ! ! code this easil
Circuits™® for STARK recursion Y

: S - i
Circuits™ for SQL A good B.Sc. student can Protocol “Atoms” and
Their Composition

KZG

Groth16

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

Circuits™ for SQL A good B.Sc. student can

code this easily

Circuits* for STARK recursion

Groth16

* or other representation
(constraints or “ZK”-VM port)

- B
Protocol “Atoms” and
Their Composition

KZG

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

: S - i
Circuits™ for SQL A good B.Sc. student can Protocol “Atoms” and
Their Composition

code this easily

KZG

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

* or other representation

ok : For non cryptographers, KZG is arguably the “most popular”
(constraints or “ZK”-VM port) T applicable [yplograp guably Pop

polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

: S - i
Circuits™ for SQL A good B.Sc. student can Protocol “Atoms” and
Their Composition

code this easily

KZG

Segmenting Computations &
Recursion Tree Logic

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

* or other representation

ok : For non cryptographers, KZG is arguably the “most popular”
(constraints or “ZK”-VM port) T applicable [yplograp guably Pop

polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A Second Lens—Modularity

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good.

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good. Doing that by glueing simple protocols is best.

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good. Doing that by glueing simple protocols is best.

KAn apocryphal quote from the holy scriptures

(i.e., left as a comment just before a macro
definitions in one of the early UNIX
implementations)

v

Thompson and Ritchie, creators of UNIX

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good. Doing that by glueing simple protocols is best.

KAn apocryphal quote from the holy scriptures

(i.e., left as a comment just before a macro
definitions in one of the early UNIX
implementations)

v

Thompson and Ritchie, creators of UNIX

The gedb vision for Verifiable DBs (VDB) design:

echo “S]

L]

LCT * FROM T WH.

LR

i block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good. Doing that by glueing simple protocols is best.

KAn apocryphal quote from the holy scriptures

(i.e., left as a comment just before a macro
definitions in one of the early UNIX
implementations)

v

Thompson and Ritchie, creators of UNIX

The gedb vision for Verifiable DBs (VDB) design:

echo “S]

L]

LCT * FROM T WH.

LR

i block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Separate algorithmic (or
information-theoretic) concerns

from the cryptographic ones

Zooming in on Simplicity

A Second Lens—Modularity (continued)

echo “S]

&

ECT * FROM T WH]

E block_number = 0x123” | vdb_prover_no_crypto |

Zooming in on Simplicity

A Second Lens—Modularity (continued)

echo “S]

&

ECT * FROM T WH]

E block_number = 0x123” | vdb_prover_no_crypto |

Cryptographic
Building Blocks

linput to

input to (

Idealized VDB

1

Compiler

outputs

|
)

VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

echo “SELECT * FROM T WH]

&

The resulting design flow:

E block_number = 0x123” | vdb_prover_no_crypto |

Cryptographic
Building Blocks

linput to

input to
Idealized VDB

{
|

Compiler

outputs

|
)

VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

echo “S]

&

LECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

The resulting design flow:

1. Design an “idealized” VDB
(don’t think about cryptography)

Cryptographic
Building Blocks

linput to

input to () 1 outputs
Idealized VDB >L Compiler J > VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

echo “S]

&

LECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

The resulting design flow:

1. Design an “idealized” VDB
(don’t think about cryptography)

2. Prove its security in its own idealized model
(this is often very easy)

Cryptographic
Building Blocks

linput to

input to () 1 outputs
Idealized VDB >L Compiler J > VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

&

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

The resulting design flow:

1. Design an “idealized” VDB
(don’t think about cryptography)

2. Prove its security in its own idealized model
(this is often very easy)

3. Use the
— get security of final VDB for free

Cryptographic
Building Blocks

linput to

input to () 1 outputs
Idealized VDB >L Compiler J > VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

LECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

&

echo “S]

The resulting design flow:

1. Design an “idealized” VDB
(don’t think about cryptography)

2. Prove its security in its own idealized model
(this is often very easy)

3. Use the
— get security of final VDB for free

Implication 1: Want to improve the design of a VDB?
Improve its building blocks OR the idealized blueprint. :

Afterwards, no need to reprove security from scratch. >
Cryptographic
Building Blocks

linput to

input to { Compiler } outputs)

VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

&

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |
The resulting design flow:

1. Design an “idealized” VDB
(don’t think about cryptography)

2. Prove its security in its own idealized model
(this is often very easy)
3. Use theZ-e.r:c.):%'-e-st.i.r.l.g. .(;1:1
— : : Auth. Data Structures (ADS): : accumulated set
get securlty of final VDB for free special vector commitﬁnent)s —»: |Linear-Map (S)VC) (Section 9.1) X Sei;) Accumulators
and accumulators (u,v) =y " (additional property) | X CY,XUY = Z

Implication 1: Want to improve the design of a VDB?
|mprove |tS bU||d|ng blOCkS OR the |deal|zed blueprlnt ... : ...

Afterwards, no need to reprove security from scratch. >
Cryptographic
Building Blocks

linput to

input to () 1 outputs
Idealized VDB >L Compiler J > VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

LECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

&

echo “S]

The resulting design flow:

1. Design an “idealized” VDB
(don’t think about cryptography)

2. Prove its security in its own idealized model
(this is often very easy) l
3 Use the e T T P
— get securlty of final VDB for free ?S;Z};%Jteacts;ﬁ%%rﬂrenﬁtﬁgrﬁ)s: _, Linear-Map (S)VC) aC(CSL:arcr;:;Liléaflt%éls)et X Sei;) Accumulators
- -)) and accumulators (u,v) s Y) (additional property) 1 x g Y XUY s Z
Implication 1: Want to improve the design of a VDB? =
mprove its building blocks OR the idealized blueprint. | s R
Afterwards, no need to reprove security from scratch. ~
Cryptographic
But we can push modularity further! Bmldmj Plocks
input to

input to () 1 outputs
Idealized VDB >L Compiler J > VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

LECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

&

echo “S]

The resulting design flow:

1. Design an “idealized” VDB KZG [52]
(dOn,t th|nk abOUt Cryptography) (or other polynomial commitments)
2. Prove its security in its own idealized model
(this is often very easy)
3. Use the Zero_testlngon
' ' Auth. Data Struct ADS): : accumulated set
— get security of final VDB for free Sgecial 3 :Cmpg) rl:}rrisl:tﬁn ent)s — |Linear-Map (S)VC| _ (Section 91) | Set, Accumulators
. i _ _ and accumulators ,V) = (additional property) | X CY, X UY Lz
Implication 1: Want to improve the design of a VDB? = v =y S |
mprove its building blocks OR the idealized blueprint. | s e
Afterwards, no need to reprove security from scratch. -
Cryptographic
- Building Blocks
But we can push modularity further! - ml
input to

input to () 1 outputs
Idealized VDB >L Compiler J > VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

LECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

&

echo “S]

The resulting design flow:

1. Design an “idealized” VDB KZG [52]
(dOn,t th|nk abOUt Cryptography) (or other polynomial commitments)
2. Prove its security in its own idealized model
(this is often very easy)
3. Use the Zero_testlngon
' ' Auth. D ADS): : accumulated set
— get security of final VDB for free Sgécial ﬁctsgﬁﬁ%r;ﬁtﬁn : rﬁ}s — |Linear-Map (S)VC| _ (Section 91) | Set, Accumulators
- - : . and accumulators ,V) = (additional property) | X CY, X UY = Z
Implication 1: Want to improve the design of a VDB? = v =y Honer property |
mprove its building blocks OR the idealized blueprint. | s e
Afterwards, no need to reprove security from scratch. -
Cryptographic
. Building Block
But we can push modularity further! T
= compile_to_ADS | compile_to_poly_comm linput to

input to () 1 outputs
Idealized VDB >L Compiler J > VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

LECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

&

echo “S]

The resulting design flow:

1. Design an “idealized” VDB KZG [52]
(dOn,t th|nk abOUt Cryptography) (or other polynomial commitments)
2. Prove its security in its own idealized model
(this is often very easy) l
3 Use the e 'z'éfal't;;igi};g ST
: accumulated set

Auth. Data Structures (ADS):

— get security of final VDB for free _ _ :
special vector commitments —>:

Linear-Map (S)VC (Section 9.1) Set Accumulators

- - : . and accumulators (u,v} ~ Y) (additional property) ' X g Y, XUY s Z|
Implication 1: Want to improve the design of a VDB?
mprove its building blocks OR the idealized blueprint. | s e
Afterwards, no need to reprove security from scratch. -

Cryptographic

. Building Block

But we can push modularity further! I
= compile_to_ADS | compile_to_poly_comm linput to

. - ‘g , , . input to) outputs
Implication 2: Want better building blocks? Just improve poly commitments. Idealized VDB { Compiler }) VDB

Zooming in on Simplicity

A Second Lens—Modularity (continued)

LECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto |

&

echo “S]

The resulting design flow:

1. Design an “idealized” VDB
(don’t think about cryptography)

KZG [52]

(or other polynomial commitments)

2. Prove its security in its own idealized model
(this is often very easy)
3. Use the crvntoaranhic compiler e T
accumulated set

— get security of final VDB for free Auth. Data Structures (ADS): N .
J y special vector commitments —: | Linear-Map (S)VC| ~ (Section 9.1)

Sei;) Accumulators
and accumulators (u,v) = Y) (additional property) 1 x g Y XUY s Z

Implication 1: Want to improve the design of a VDB?
mprove its building blocks OR the idealized DIUSPIINt, |
Afterwards, no need to reprove security from scratch.

Cryptographic

I Building Block

But we can push modularity further! g Blocks
= compile_to_ADS | compile_to_poly_comm linput b0

. - ‘g , , . input to) outputs
Implication 2: Want better building blocks? Just improve poly commitments. Idealized VDB { Compiler }) VDB

Implication 3: Get post-quantum VDB for free! (from lattice-based poly commitments)

Quick Digression: Idealized Models in SNARKSs

[Prover] [Verifier]
Challenge y
S
=
£i(X) [Oracle for {f;(X)},<i §
i Add f;(X) S
Evaluate f;(z) =
[Prover] [Verifier]

|dealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP)
[Source: Anca Nitulescu’s zkSNARKSs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKSs

o Splitting “idealized” and cryptographic parts is not [
uncommon in SNARKs

Challenge y
S
2,5 <i =
£i(X) J Oracle for {f;(X)},<i — §
] Add £;(X) S
Evaluate f;(z) =
fi(2)

[Prover] [Verifier]

|dealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP)
[Source: Anca Nitulescu’s zkSNARKSs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKSs

» Splitting “idealized” and cryptographic parts is not — | v)
uncommon in SNARKs .
) Challenge y

* So what’s new here? s

£i(X) [Oracle for {£;(X)}j<i SI =" §

e l(g

fi(2)

[Prover] [Verifier]

|dealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP)
[Source: Anca Nitulescu’s zkSNARKSs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKSs

« Splitting “idealized” and cryptographic parts is not s | S
uncommon in SNARKSs .
« So what’s new here? | [s
£.(X) Oracle for {f;(X)};<) = §
* This was not a design pattern among VDBs from | &89 l(S
ADS [J [“ J

|dealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP)
[Source: Anca Nitulescu’s zkSNARKSs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKSs

» Splitting “idealized” and cryptographic parts is not — |)
uncommon in SNARKs .
« So what’s new here? | [s
£.(X) Oracle for {f;(X)};<) =8 §
* This was not a design pattern among VDBs from | &89 l(S
ADS [J [“ J
« Our idealized models are tailored to the DB setting -

|dealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP)
[Source: Anca Nitulescu’s zkSNARKSs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKSs

» Splitting “idealized” and cryptographic parts is not o |)
uncommon in SNARKs .
* So what’s new here? [IRLE
£.(X) Oracle for {f;(X)};<) =8 §
* This was not a design pattern among VDBs from | &89 l(S
ADS [J [“ J
« Our idealized models are tailored to the DB setting -

|dealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP)

¢ d|ﬁerent “OraC|eS” from thOSG |n SNARKS [Source: Anca Nitulescu’s zkSNARKSs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKSs

* Splitting “idealized” and cryptographic parts is not o] v
uncommon in SNARKs .
) Challenge y
* So what’s new here? T §
£.(X) ; Oracle for {f;(X)}j<i = g
* This was not a design pattern among VDBs from [](:
ADS £i(2)
. .) . [Prover] [Verifier]
* QOur idealized models are tailored to the DB setting
» different “oracles” from those in SNARKSs Souroe: Anca Nitulescu’s ZkSNARKe: A Gentle introcuction] -

 SNARKSs: polynomial evaluation

Quick Digression: Idealized Models in SNARKSs

o Splitting “idealized” and cryptographic parts is not T o) [Verifier
uncommon in SNARKs g
) Challenge y
* So what’s new here?) 5
£.(X) ; Oracle for {f;(X)};<i o = §
* This was not a design pattern among VDBs from | 5 l(S
ADS fi(2)
. " . . [Prover] [Verifier]
* QOur idealized models are tailored to the DB setting
- different “oracles” from those in SNARKSs [Source: Anca Nitulescu's kSNARKS: A Gente Introduction]

 SNARKSs: polynomial evaluation
e ours: vectors/sets-based (next slides)

Quick Digression: Idealized Models in SNARKSs

o Splitting “idealized” and cryptographic parts is not [
uncommon in SNARKs

Challenge y

e So what’s new here?

_ _ fi(X) [Oracle for {f;(X)};<i 5y S %
* This was not a design pattern among VDBs from | =Y li S
ADS [J [“ J
. . . . Prover Verifier
* QOur idealized models are tailored to the DB setting
- different “oracles” from those in SNARKSs [Source: Anca Nitulescu's kSNARKS: A Gente Introduction]

 SNARKSs: polynomial evaluation
e ours: vectors/sets-based (next slides)

* Implication: no algebra; simpler model to
reason about

So Far

* |Landscape of prior VDB design and limitations
* Quick overview of efficiency and design philosophy of gedb

 NEXT: more on idealized protocols for VDBs and intuitions about how gedb
works

ldealized VDBs

echo “S]

ECT * FROM T WH]

E block_number = 0x123” (vdb_prover_no_crypto)|

A Warm-up Example for ldealized VDBs

Consider a “query template” such as this:

SELECT C FROM T WHERE SomeCondition

A Warm-up Example for ldealized VDBs

Consider a “query template” such as this:

SELECT C FROM T WHERE SomeCondition
example for SomeCondition:

Cl > 4 AND C2 = “OCL”

A Warm-up Example for ldealized VDBs

Consider a “query template” such as this:

SELECT C FROM T WHERE SomeCondition
example for SomeCondition:

Client will receive a response Resp like this: Cl > 4 AND C2 = “OCL”
Resp = (X’ (y’”)reX)

A Warm-up Example for ldealized VDBs

Consider a “query template” such as this:

SELECT C FROM T WHERE SomeCondition
example for SomeCondition:

Client will receive a response Resp like this: Cl > 4 AND C2 = “OCL”
SEE

(Claimed) Set of relevant
rows from column C

A Warm-up Example for ldealized VDBs

Consider a “query template” such as this:

SELECT C FROM T WHERE SomeCondition
example for SomeCondition:

Client will receive a response Resp like this: Cl > 4 AND C2 = “OCL”
= (X0

(Claimed) Set of relevant

Values of column at rows X
rows from column C

(also claimed)

A Warm-up Example for ldealized VDBs

Consider a “query template” such as this:

SELECT C FROM T WHERE SomeCondition
example for SomeCondition:

Client will receive a response Resp like this: Cl > 4 AND C2 = “OCL”
= (X0

(Claimed) Set of relevant

Values of column at rows X
rows from column C

(also claimed)

What could the client check to be persuaded that Resp is correct?

A Warm-up Example for ldealized VDBs

Consider a “query template” such as this:

SELECT C FROM T WHERE SomeCondition
example for SomeCondition:

Client will receive a response Resp like this: Cl > 4 AND C2 = “OCL”
= (X0

(Claimed) Set of relevant

Values of column at rows X
rows from column C

(also claimed)

What could the client check to be persuaded that Resp is correct?

1. SomeCondition(r) = T < r € X (right rows?)
2. Vre X y.=Clr]| (right values?)

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”:

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: X v
c : ' handle to aset handle to a vector
Prover can send “pointers” (handles) to sets and vectors.

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: X v
c : ' handle to aset handle to a vector
Prover can send “pointers” (handles) to sets and vectors.

Client can perform special checks on handles.

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: X v
c : ' handle to aset handle to a vector
Prover can send “pointers” (handles) to sets and vectors.

Client can perform special checks on handles. Example: read?(u, X ,v)
checks whether 4 x = v

(“If | read from u at positions X do | get v?”)

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: X v
c : ' handle to aset handle to a vector
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)

Toy example: checks whether ux = v

P V (“If | read from u at positions X do | get v?”)

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: X v
c : ' handle to aset handle to a vector
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)

Toy example: checks whether ux = v

P V (“If | read from u at positions X do | get v?”)

v := (9,16, 25, 36, 49)

A Warm-up Example for ldealized VDBs

(continued)

SELECT C FROM T WHERE SomeCondition Resp/—(

We want to check: (Claimeq) Set of relevant Values of column at rows X

1. SomeCondition(r) = T < r € X (right rows?) rows from column C (also, claimed)
2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: handle)ti) e ’:’O N
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)
Toy example: checks whether U xy = v
p V (“If | read from u at positions X do | get v?”)
w:=(12,2%,...,992,100%) v := (9,16, 25, 36, 49)

X :={3,4,5,6,7}

A Warm-up Example for ldealized VDBs

(continued)

SELECT C FROM T WHERE SomeCondition Resp/—(

We want to check: (Claimeq) Set of relevant Values of column at rows X

1. SomeCondition(r) = T < r € X (right rows?) rows from column C (also, claimed)
2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: handle)ti) e ’:’O N
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)
Toy example: checks whether U xy = v
p V (“If | read from u at positions X do | get v?”)
w:= (12,22,...,99% 100?) Send w. X v = (9,16, 25, 36, 49)

X :={3,4,5,6,7} g

A Warm-up Example for ldealized VDBs

(continued)

SELECT C FROM T WHERE SomeCondition Resp/—(

We want to check: (Claimeq) Set of relevant Values of column at rows X

1. SomeCondition(r) = T < r € X (right rows?) rows from column C (also, claimed)
2. Vre X y.=Clr]| (right values?)

Let’s endow server/client with “special powers”: handle)ti) e ’:’O N
Prover can send “pointers” (handles) to sets and vectors.
Client can perform special checks on handles. Example: read?(u, X ,v)
Toy example: checks whether U xy = v
p V (“If | read from u at positions X do | get v?”)
w:= (12,22,...,99% 100?) Send w. X v = (9,16, 25, 36, 49)

X :={3,4,5,6,7} > Assert read?(u, X ,v)

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:
P SELECT C FROM T WHERE SomeCondition Vv

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:
P SELECT C FROM T WHERE SomeCondition v

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:
P SELECT C FROM T WHERE SomeCondition V

Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column ¢ from an offline stage

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column C from an offline stage
SONd X, Y

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

2. Vre X y.=Clr]| (right values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column C from an offline stage
SONd X, Y

> Assert read?(vc, X ,y) // checks condition 2 above

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

< 2.Vre X y.=Clr] (rightvalues?] >

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column C from an offline stage
Send X : y .. AL e e AR ERE R RAEANEREREEEREREAEESARERSESREEEERREERERsREnannal

> Assert read?(v¢, X, y)@ecks condition 2 above

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
1. SomeCondition(r) = T <= r € X (right rows?) rows from column C (also, claimed)

< 2.Vre X y.=Clr] (rightvalues?] >

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column ¢ from an offllnestage
Send X , y .. .
g Assert read?(vc, X, y)@ecks condition 2 above

Run subprotocol for checking SomeCondition(r) =T < re X

A Warm-up Example for ldealized VDBs

(continued)
SELECT C FROM T WHERE SomeCondition Resp/—(
We want to check: (Claimed) Set of relevant Values of column at rows X
<. SomeCondition(r) =T < r & X (r/ghtrovv\s;?D rows from column € (also, claimed)

< 2. Vre X y, = C[r] (right ht values?)

Special handles/“powers”

[plus more checks,

that are not relevant
checks whether U x — v at the moment]

A Y read?(u, X ,v)

handle to aset handle to a vector

A protocol sketch for the query above:

P SELECT C FROM T WHERE SomeCondition V
Resp := (X (yr)re)() Preprocessmg V holds a handle V¢ to the values in column ¢ from anoffllnestage
Send X , y .. T T
> Assert read?(v¢, X, y)Q/ checks condition 2 a;b_q@

< Run subprotocol for checking SomeCondition(r) = T <= @

The Flow of an Idealized Protocols

The Flow of an Idealized Protocols

ldx(db)
Preprocess db and compute handles . 'ldx : 'v'ldx e
P(qry, resp) Vf(qry, resp)

P P
[]vl ’ oXl ,...,Trhint

v

Using access to mhine and

Idx Idx P P
1 3 vl ,ooo,C)Xl,[]vl’ooc,

run any of the operations the verifier is endowed with.

Output accept or reject.

General flow in an idealized protocol

The Flow of an Idealized Protocols

ldx(db)

Preprocess db and compute handles QX'ldx : nv'ldx e

P(qry, resp) Vf(qry, resp)

Using access to mhine and

Idx Idx P P
OX1 ’ []vl aaaaa (3X1 ’ []vl 9999

run any of the operations the verifier is endowed with.

Output accept or reject.

General flow in an idealized protocol

Key role of handles (and their ops):
providing expressivity, but also succinctness.

The Flow of

an ldealized Protocols

ldx(db)

ldx

Preprocess db and compute handles QX'ldx y U1 o

P(qry, resp)

Vf(qry, resp)
[]’v']D_) Ct)(]'_D) y TChi
Using access to mhine and
Id Id P P
X1 U1 e X1 5 U1 -
@n any of the operations the verifier is endowed@
Output acceptorreject:

General flow in an idealized protocol

Key role of handles (and their ops):
providing expressivity, but also succinctness.

“Atomic” Operations in an ldealized VDB

“Atomic” Operations in an ldealized VDB

read?(uw, X ,v) (read)

“Atomic” Operations in an ldealized VDB

read?(uw, X ,v) (read)

X CY Z =X UY Z;XﬂY(setops)

“Atomic” Operations in an ldealized VDB

read?(uw, X ,v) (read)

7
X CY Z =X UY Z;XﬂY(setops)

u =av + w (homomorphism)

“Atomic” Operations in an ldealized VDB

read?(uw, X ,v) (read)

?
X CY Z =X UY Z;XﬂY(setops)

? : ? :
u =av + w (homomorphism) <u, v > =1y (inner product)

“Atomic” Operations in an ldealized VDB

read?(uw, X ,v) (read)

?

X CY Z =X UY Z;XﬂY(setops)

? : ? :
u =av + w (homomorphism) <u, v > =1y (inner product)

v [X] -0 (zero test)

“Atomic” Operations in an ldealized VDB

read?(uw, X ,v) (read)

?

X CY Z =X UY Z;XﬂY(setops)

? : ? :
u =av + w (homomorphism) <u, v > =1y (inner product)

v [X] -0 (zero test)

Q1: Are these operations expressive enough?

“Atomic” Operations in an ldealized VDB

read?(uw, X ,v) (read)

?

X CY Z =X UY Z;XﬂY(setops)

.,
u = v + w (homomorphism) <u, v > =1y (inner product)

v [X] -0 (zero test)

Q1: Are these operations expressive enough?

Q2: Can we compile them through simple cryptographic building blocks?

Idealized Protocols are Very Expressive

From these:

read?(uw, X ,v) (read)
?
XCY Z =XUY Z =XnNY (setops)
u = ov + w (homomor phism) <u, 'v> ~ y (inner product)

v [X] ~0 (zero test)

Idealized Protocols are Very Expressive

From these:

read?(uw, X ,v) (read)
XCy Z =XUY Z =XnNY (setops)
u = ov + w (homomor phism) <u, 'v> ~ y (inner product)
v [X] ~0 (zero test)

We can get these (and more):

Idealized Protocols are Very Expressive

From these:

read?(uw, X ,v) (read)
?
X CY Z =XUY Z;XﬂY(setops)

”
u = ov + w (homomorphism) <u, v > =y (inner product)

v [X] ~0 (zero test)

We can get these (and more):

? ?

a < v < B (range check)

Idealized Protocols are Very Expressive

From these:

read?(u, X ,v) (read)
?
X CY Z =XUY Z;XﬂY(setops)

0
u = av + w (homomorphism) <u, v > =1y (inner product)

v [X] ~0 (zero test)

We can get these (and more):

(?

? 7 § : g ? |
a< v < B (range check) v; =Y (sum check in target subset)
je X

Idealized Protocols are Very Expressive

From these:

read?(u, X ,v) (read)
?
X CY Z =XUY Z;XﬂY(setops)

0
u = av + w (homomorphism) <u, v > =1y (inner product)

v [X] ~0 (zero test)

We can get these (and more):

(?

? 7 § : g ? |
a< v < B (range check) v; =Y (sum check in target subset)
je X

”
X =eqSet(u, v) (tests where two slices are equal)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
?
XCY ZZXUY Z = XNY (setops)

.
u = aw + w (homomorphism) <u, v > =y (inner product)

v [X] ~0 (zero test)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

?

? ?
X CY Z =X UY Z = X NY (setops)

? : ? .
u =av + w (homomorphism) <u, v > =y (inner product)

v [X] ~0 (zero test)

Linear-Map (S)VC

L

zero-testing on
accumulated set

(Section 9.1) Set Accumulators

3 ?
(u,v) = (7 (additional property) | X CY, X UY = Z

Cryptographic
Building Blocks

input to

a4

Idealized VDB L

outputs

VDB

h

o |
Compiler
)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

?
XCY ZZXUY Z = XNY (setops)
u=av+ w (homomorphism) <u, 'v> = y (inner product)

v [X] ~0 (zero test)

We commit to handles:

X v

accumulator linear-map vector commitment

Linear-Map (S)VC

L

zero-testing on
accumulated set

(Section 9.1) Set Accumulators

3 ?
(u,v) = (7 (additional property) | X CY, X UY = Z

Cryptographic
Building Blocks

input to

a4

Idealized VDB L

outputs

VDB

h

o |
Compiler
)

From ldealized to Cryptographic VDB

?

l?

read?(uw, X ,v) (read)
? ?
X CY Z =X UY Z = X NY (setops)
u =av + w (homomorphism) <u, 'v> = y (inner product)

v [X] ~0 (zero test)

We commit to handles:

X

accumulator

Accumulators:

()
linear-map vector commitment

VfySubset(accx, accy, Tsubset) (checks X C Y')

R T

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators
(u, ’v> = Y) (additional property) 1x g Y, XUY = Z

Cryptographic
Building Blocks

input to

a4

outputs

~

VDB

Idealized VDB L Compiler }

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

CXCY Z L XUy Z < XNY (setops) O

u=av+ w (homomorphism) <u, 'v>

v [X] ~0 (zero test)

= y (inner product)

We commit to handles:

X

Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y')

()
accumulator linear-map vector commitment

zero-testing on

B L R R N L \ --
.
* .
* .
.
.
.
.
.
.

Linear-Map (S)VC

Vi

accumulated set
(Section 9.1) Set Accumulators

?

(u,v) = Y (additional property) | X CY, X UY = Z
... P
|
|
Cryptographic
Building Blocks

input to
input to (outputs

Idealized VDB

A 4

VDB

o |
Compiler
)

From ldealized to Cryptographic VDB

?

l?

read?(uw, X ,v) (read)
? ?
X CY Z =X UY Z = X NY (setops)
u =av + w (homomorphism) <u, 'v> = y (inner product)

v [X] ~0 (zero test)

We commit to handles:

X

accumulator

Accumulators:

()
linear-map vector commitment

VfySubset(accx, accy, Tsubset) (checks X C Y')

R T

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators
(u, ’v> = Y) (additional property) 1x g Y, XUY = Z

Cryptographic
Building Blocks

input to

a4

outputs

~

VDB

Idealized VDB L Compiler }

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

From ldealized to Cryptographic VDB

< read?(uw, X ,v) (read) >
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) | Set Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
X Cy ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product)
v [X] ; O (ZB’I"O tBSt) Zero_tesltlng On
: accumulated set
. . . (Section 9.1) \ Set? Accumulators
W Linear-map Vector Commitments and their (additional property) | X C Y, XUY % Z
Practical ApplicatiOIlS e
Cryptographic
Matteo Campanelli’, Anca Nitulescu!, Carla Rafols?, Alexandros Zacharakis?, and Arantxa Zapico?*. | Building Blocks
ACCU' ! Protocol Labs {matteo, anca}@protocol.ai input to
 Universitat Pompeu Fabra {carla.rafols, alexandros.zacharakis, arantxa.zapico }@Qupf.edu ~] _—
: { Compiler i VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y) J

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

?

? ?
X CY Z =X UY Z =X NY (setops)

? ? .
u =av + w (homomorphism) @, 'v> =1y (inner prod@ J'

v [X] ~0 (zero test)

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators

We Commit to handles: (u,v} ; Y) (additional property) ' X g Y,X uY ; A
X v !
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
_ ldealized VDB |-t Compiler |
Vector Commitments: VfySubvec(cms,, X, y, Toubvec) (checks vx = y) |)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
— 2 ?
< U =oav + w (homomorp@ <u, 'v> =y (inner product)
~—— J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) | Set Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Toubvec) (checks vx =)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) | Set Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)
XCY ZZXUY Z = XNY (setops)
u = v + w (homomorphism) <u, v > = y (inner product) J'
v [X] —_ O (ZB’I"O tBSt) Zero_testlng On
: accumulated set
. [Linear-Map (S)VC | (Section 9.1) \ Set? Accumulators
We commit to handles: (w,v) =y | (additional property) | X CY,XUY = Z
X v :
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
input to (.] outputs
. Idealized VDB >L Compiler J > VDB
Vector Commitments: VfySubvec(cm,, X, y, Tsubvec) (checks vx = y)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

, . , KZG [52]
X CY Z =X UY Z = X NY (setops)

(or other polynomial commitments)

?

u = aw + w (homomorphism) <u, v > =y (inner product) l

v [X] ~0 (zero test)

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators

We Commit to handles: (u,v} ; Y) (additional property) ' X g Y,X uY ; A
X v !
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
_ ldealized VDB |-t Compiler |
Vector Commitments: VfySubvec(cms,, X, y, Toubvec) (checks vx = y) |)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

From ldealized to Cryptographic VDB

read?(uw, X ,v) (read)

? — KZG [52 —
X CY Z<ZXUY Z < XNY (setops) < 52 P

— or other polynomial commitments

? : ? .
u =av + w (homomorphism) <u, v > =y (inner product)

v [X] ~0 (zero test)

zero-testing on
accumulated set

Linear-Map (S)VC (Section 9.1) Set Accumulators

We Commit to handles: (u,v} ; Y) (additional property) ' X g Y,X uY ; A
X v !
accumulator linear-map vector commitment Cryptographic
Building Blocks
Accumulators: VfySubset(accx, accy, Tsubset) (checks X C Y') input to
_ ldealized VDB |-t Compiler |
Vector Commitments: VfySubvec(cms,, X, y, Toubvec) (checks vx = y) |)

+ linear-map opening: VfyLin(cmy, cmy,y, min) (checks (u,v) = v)

The final construction: gedb

* gedb is simply a specific idealized VDB compiled “through KZG” (with the
approach from last slide)

The final construction: gedb

* gedb is simply a specific idealized VDB compiled “through KZG” (with the

approach from last slide)

— MIN query: consider the query:

Q6: SELECT MIN(col,,;) FROMT (7)

Pre-processing: we assume that the Verifier has the slice handle tgt corresponding to coligt.

Proof computation: the Prover does as follows:
— compute the set of positions argmin(tgt) in col;,; of the minimum values: argmin(tgt) =

{j : colyge[j] <v forallv € colyyt} (here we denote with colyg:[j] the j-th element in the
slice referred by tgt .

— compute X, gmin and sends it to the Verifier

Proof verification: the Verifier performs the following steps:
B get oXargmz'n

— retrieve vmin ¢ read(5Xargmin , tgt)
— define ntgt’ = gt — u(vm;n, oy Umin)
— check that every value in the slice handle ggt’ lies in the interval [0, 2")

Completeness follows from the fact that X, 4min actually contains only the indices with
the minimum value in the column (it can contain more than one element if the minimum

is repeated multiple times). Therefore vmin < read(5Xargmin , tgt) outputs a vector con-

taining only the minimum value in the column col;4:. The correctness is also enforced by the
range proof proving that after removing from col;y: the vector vmin[0]u1, where uy is the
slice comprising of all ones, it is contained in the range [0,2¢) meaning that these values are

all greater than v,;,[0]. The adversarial prover sends X, gmin ; therefore if the verification

returns 1 while SatisfiesQry (db, qry,resp) = false, it means that X,.gmin are not the in-

dexes containing the minimum value. If this is the case, the range proof fails since there is at
least a value in ntgt’ that is less then 0, since the range proof is sound it can happen only

with negligible probability.

The final construction: gedb

* gedb is simply a specific idealized VDB compiled “through KZG” (with the

approach from last slide)

— MIN query: consider the query:

Q6 :

SELECT MIN(col,,;) FROMT (7)

Pre-processing: we assume that tj

Proof computation: the Prover d
— compute the set of positions a

{j : colyge[j] < v forallv €
slice referred by gt .

— compute ~X,rgmin and seng

Proof verification: the Verifier pej
o get oXargmz'n

— retrieve vUmin ¢ read(5Xargn|
— define ntgt’ = ntgt — ﬂ(vmim
— check that every value in the

Completeness follows from the faf

the minimum value in the colum|
is repeated multiple times). Therg

taining only the minimum value ij
range proof proving that after re
slice comprising of all ones, it is ¢

all greater than v,;,[0]. The adver

Nested queries. Consider the query:

Q9: SELECT col; FROMT; WHERE cols IN

10
(SELECT col3 FROM T, WHERE coly = u) (10)

Pre-processing: as before.

Proof computation: Prover sends to Verifier the following set handles: col; (the entry of set

COl2

handle ~cols corresponding to value v) and Ocolgv1 ,

colzvn , that are the set

vg 1Y O

handles entries in col, of the values {v{,vs,...,v,} contained in the answer to the sub-query

SELECT cols FROM T5 WHERE col4 = w.
Proof verification: Verifier creates the new set handle —cola,, equalto _cola, U _colz, U---U

~colz, ; finally, Verifier retrieves the answer of the nested query via read(~cola,,, , []col4).

Again, to prove that the query result contains all the valid tuples, prover and verifier engage
in a protocol similar to the second part of the one defined for Query . In general, we can handle
nested queries through techniques analogous to those in [85] but without having to rely on a
preprocessing containing auxiliary info on every possible pair of columns in the same table (which
leads to its quadratic blowup).

returns 1 while SatisfiesQry (db, qry, resp) = false, it means that X,;gmin are not the in-

dexes containing the minimum value. If this is the case, the range proof fails since there is at
least a value in ntgt’ that is less then 0, since the range proof is sound it can happen only

with negligible probability.

The final construction: gedb

* gedb is simply a specific idealized VDB compiled “through KZG” (with the
approach from last slide)

— MIN query: consider the query:

Q6 :

SELECT MIN(col,,;) FROMT

(7)

Pre-processing: we assume that tj Nested queries. Consider the query:

Proof computation: the Prover d
— compute the set of positions a

{7 : colyge[j] < v forallv € cf
slice referred by gt .

— compute ~X,rgmin and seng

Q9 :

Pre-processing: as before.

SELECT col; FROM T; WHE

|
Join queries. Consider tables T, T» with respective columns named pk, col; and fk, cols.

As their names suggest pk is primary key of table 77, and fk is a foreign key in 75 referencing

(SELECT col3 FROM T; WHER] values from pk. Consider the query:

Proof wverification: the Verifier pe} Proof computation: Prover sends to Verifier the following s

- get oXargmz'n
— retrieve vmin ¢ read(5Xargn

— define ntgt’ = ntgt — ﬂ(vmim

— check that every value in the

Completeness follows from the f
the minimum value in the colur
is repeated multiple times). Ther

taining only the minimum value i
range proof proving that after re
slice comprising of all ones, it is ¢

all greater than v,;,[0]. The adver

handle ~cols corresponding to value v) and ~cola,

handles entries in coly of the values {v,vo, ...

1’ O

SELECT col3 FROM T, WHERE col4 = wu.
Proof verification: Verifier creates the new set handle cola

—~cola, ; finally, Verifier retrieves the answer of the nested

Again, to prove that the query result contains all the va

in a protocol similar to the second part of the one defined
nested queries through techniques analogous to those in
preprocessing containing auxiliary info on every possible pai

leads to its quadratic blowup).

Q5: SELECT x FROMT; JOINT, ON pk = fk

(6)
f

| Pre-processing: as before.
Proof computation: the Prover performs the following steps:

,Upn } contgi

— retrieves the set handle fk referring the inverse lookup {j : fk[j] = v}, for each v € V).

¥

— retrieves the set handle —pk referring the inverse lookup {j : pk[j| = v}, for each v € V.
C

1 The Prover sends —pk , ~fk to the Verifier.

fp:
|

Proof verification: The Verifier performs the following steps:

compute pk + read(-pk , pk)

returns 1 while SatisfiesQry (db, qry, resp) = false, it means that X,;gmin are not the in-

dexes containing the minimum value. If this is the case, the range proof fails since there is at
least a value in ntgt’ that is less then 0, since the range proof is sound it can happen only

with negligible probability.

compute ﬁc « read(ofk , (k)

check that ﬁc = ﬁ
rst; « read(opk , fh.rst)

compute rsty read(~fk , HTg.rst)

Wrapping Up

Wrapping Up

 Simplicity is important both for real-world security and for research progress

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years

Wrapping Up

 Simplicity is important both for real-world security and for research progress

 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:

Wrapping Up

 Simplicity is important both for real-world security and for research progress

 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:

 performant

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
* (an unsupervised LLM could implement it from its idealized description)

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
* (an unsupervised LLM could implement it from its idealized description)
 Framework behind gedb’s design is plausibly of independent interest

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
* (an unsupervised LLM could implement it from its idealized description)
 Framework behind gedb’s design is plausibly of independent interest
* Future work:

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
 (an unsupervised LLM could implement it from its idealized description)
 Framework behind gedb’s design is plausibly of independent interest
* Future work:
 Beyond SQL? (Key-Value, etc)

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
 (an unsupervised LLM could implement it from its idealized description)
 Framework behind gedb’s design is plausibly of independent interest
* Future work:
 Beyond SQL? (Key-Value, etc)
o Zero-knowledge (hiding)

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
 (an unsupervised LLM could implement it from its idealized description)
 Framework behind gedb’s design is plausibly of independent interest
* Future work:
 Beyond SQL? (Key-Value, etc)
o Zero-knowledge (hiding)
* A lookup-singularity for VDBs?

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
 (an unsupervised LLM could implement it from its idealized description)
 Framework behind gedb’s design is plausibly of independent interest
* Future work:
 Beyond SQL? (Key-Value, etc)
o Zero-knowledge (hiding)
* A lookup-singularity for VDBs?
 Formally verified implementation?

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
 (an unsupervised LLM could implement it from its idealized description)
 Framework behind gedb’s design is plausibly of independent interest
* Future work:
 Beyond SQL? (Key-Value, etc)

* Zero-knowledge (hiding) Th nk '
* A lookup-singularity for VDBs? d S.

 Formally verified implementation?

Wrapping Up

 Simplicity is important both for real-world security and for research progress
 Complicated SNARK-based stacks may often be an overkill and not worth the additional risks
* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new VDB aiming at being:
 performant
* (can scale to million of rows; proof size independent of |DBJ|; verifier might even be directly on chain)
* astonishingly simple
 (an unsupervised LLM could implement it from its idealized description)
 Framework behind gedb’s design is plausibly of independent interest
* Future work:
 Beyond SQL? (Key-Value, etc)

* Zero-knowledge (hiding) Th nk '
* A lookup-singularity for VDBs? d S.

- Formally verified implementation? Questions?

