
Matteo Campanelli @ University of Tartu—October 7th 2025

On the Design of Modern
Verifiable Databases

Link to paper (eprint:2025/1408)

Offchain Labs

www.binarywhales.com
matteo@offchainlabs.com

https://ia.cr/2025/1408
mailto:matteo@offchainlabs.com

Integrity in Databases

Integrity in Databases

• Databases are at the hearth of our technological infrastructure

Integrity in Databases

• Databases are at the hearth of our technological infrastructure

• Outsourcing them is very common (for storage and processing)

Integrity in Databases

• Databases are at the hearth of our technological infrastructure

• Outsourcing them is very common (for storage and processing)

• This introduces risks:

Integrity in Databases

• Databases are at the hearth of our technological infrastructure

• Outsourcing them is very common (for storage and processing)

• This introduces risks:

• “AWS, would you give me the response to this query?”

Integrity in Databases

• Databases are at the hearth of our technological infrastructure

• Outsourcing them is very common (for storage and processing)

• This introduces risks:

• “AWS, would you give me the response to this query?”

• But how do we know the response is correct?

Integrity in Databases

• Databases are at the hearth of our technological infrastructure

• Outsourcing them is very common (for storage and processing)

• This introduces risks:

• “AWS, would you give me the response to this query?”

• But how do we know the response is correct?

• Arbitrary faults, malicious behavior,…

Integrity in Databases

• Databases are at the hearth of our technological infrastructure

• Outsourcing them is very common (for storage and processing)

• This introduces risks:

• “AWS, would you give me the response to this query?”

• But how do we know the response is correct?

• Arbitrary faults, malicious behavior,…

“Verifiable” Databases (VDB)
are a cryptographic solution to this problem

Further Motivation for VDBs

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

• Applications in addition to the above: blockchain settings

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

• Applications in addition to the above: blockchain settings
• providing proof for answers from “coprocessors”, etc.

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

• Applications in addition to the above: blockchain settings
• providing proof for answers from “coprocessors”, etc.
• coprocessor ≈ sends SomeAnalysis(chain) to the chain

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

• Applications in addition to the above: blockchain settings
• providing proof for answers from “coprocessors”, etc.
• coprocessor ≈ sends SomeAnalysis(chain) to the chain

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

• Applications in addition to the above: blockchain settings
• providing proof for answers from “coprocessors”, etc.
• coprocessor ≈ sends SomeAnalysis(chain) to the chain

smart
contract coprocessor

SELECT * FROM Txs …
result

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

• Applications in addition to the above: blockchain settings
• providing proof for answers from “coprocessors”, etc.
• coprocessor ≈ sends SomeAnalysis(chain) to the chain

smart
contract coprocessor

SELECT * FROM Txs …
result

Further Motivation for VDBs

• Implication of Verifiable Databases: not having to trust your DB provider
• Pipe dream ≈ every data flow from every DB APIs authenticated through a verifiable DB
• Analogy: HTTPS and its ubiquity
• Potential outcome: Information flow that is fully certified cryptographically
• Even a “partial version” of the pipe dream might be useful, of course

• Applications in addition to the above: blockchain settings
• providing proof for answers from “coprocessors”, etc.
• coprocessor ≈ sends SomeAnalysis(chain) to the chain

Before proceeding with verifiable databases, let’s have a quick cryptographic warm up.

smart
contract coprocessor

SELECT * FROM Txs …
result

Warm Up:
“Integrity” in Cryptography

Cryptographic “Integrity”—Common Examples

Cryptographic “Integrity”—Common Examples

• Digital signatures

Cryptographic “Integrity”—Common Examples

• Digital signatures

• verifies a sender (and more)

Cryptographic “Integrity”—Common Examples

• Digital signatures

• verifies a sender (and more)

• Cryptographic hash functions, e.g., SHA, Blake

Cryptographic “Integrity”—Common Examples

• Digital signatures

• verifies a sender (and more)

• Cryptographic hash functions, e.g., SHA, Blake

• verifies alterations on an object (and more)

Cryptographic “Integrity”—Common Examples

• Digital signatures

• verifies a sender (and more)

• Cryptographic hash functions, e.g., SHA, Blake

• verifies alterations on an object (and more)

• Example (file sharing):

Cryptographic “Integrity”—Common Examples

• Digital signatures

• verifies a sender (and more)

• Cryptographic hash functions, e.g., SHA, Blake

• verifies alterations on an object (and more)

• Example (file sharing):

• “The file I expect should have hash h”

Cryptographic “Integrity”—Common Examples

• Digital signatures

• verifies a sender (and more)

• Cryptographic hash functions, e.g., SHA, Blake

• verifies alterations on an object (and more)

• Example (file sharing):

• “The file I expect should have hash h”

• assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution:
just hash each piece.

[Image source: transparency.dev]

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution:
just hash each piece.

Instead, 
make a tree: final digest 

of O(1) size

We concatenate before hashing. E.g. C = H(A||B)[Image source: transparency.dev]

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution:
just hash each piece.

Instead, 
make a tree: final digest 

of O(1) size

To prove 
4 is suffix:

 client has or 
 can compute

We concatenate before hashing. E.g. C = H(A||B)[Image source: transparency.dev]

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution:
just hash each piece.

Instead, 
make a tree: final digest 

of O(1) size

To prove 
4 is suffix:

 client has or 
 can compute client receivesWe concatenate before hashing. E.g. C = H(A||B)[Image source: transparency.dev]

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution:
just hash each piece.

Instead, 
make a tree: final digest 

of O(1) size

To prove 
4 is suffix:

 client has or 
 can compute client receivesWe concatenate before hashing. E.g. C = H(A||B)[Image source: transparency.dev]

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

• Limitation with ?assert(𝖧(𝖿𝗂𝗅𝖾𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝖽) == h)
• I must hash the whole object (the file) to check its integrity

• What if I simply want this for example?
• I receive a claimed suffix of the file and want to check whether it actually is the suffix.
• Checking whether a public key is in a list of a trusted keys (without reading the whole list)

A non-solution:
just hash each piece.

Instead, 
make a tree: final digest 

of O(1) size

To prove 
4 is suffix:

 client has or 
 can compute client receivesWe concatenate before hashing. E.g. C = H(A||B)

final proof 
of O(log) size

[Image source: transparency.dev]

Cryptographic “Integrity”—Less Common Examples
(Merkle Trees)

From Merkle Trees to Authenticated Data Structures

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

• But there are more examples of ADS:

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

• But there are more examples of ADS:
• Authenticated Range Trees (what the name suggests)

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

• But there are more examples of ADS:
• Authenticated Range Trees (what the name suggests)
• Polynomial Commitments (X = polynomial, Y = poly evaluation)

* a property called 
 succinctness

From Merkle Trees to Authenticated Data Structures

• An Authenticated Data Structure (ADS) is a construction that “authenticates”
a data structure
• can produce a digest to object of type X
• can prove property Y about (without providing X in its entirety*)

• Merkle Trees are an example for:
• X = set (root of tree is a digest to a set)
• Y = set membership
• such an ADS is called an accumulator

• Merkle Trees actually support also X=vector, Y= lookup by index
• such an ADS is called a vector commitment

• But there are more examples of ADS:
• Authenticated Range Trees (what the name suggests)
• Polynomial Commitments (X = polynomial, Y = poly evaluation)
• … * a property called 

 succinctness

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

Integrity ≈ “is this what I expect?”

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

Integrity ≈ “is this what I expect?”

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

?

Integrity ≈ “is this what I expect?”

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”

Computational 
Integrity 

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”

Computational 
Integrity 

Wait. Weren’t We Talking About Signatures a Second Ago?
Integrity is a ductile notion

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

Integrity ≈ “is this what I expect?”

General
Cryptographic

Proofs

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

Some program F

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

Some program F

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

Some program F

hF

“digest”

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

y, π

Some program F

hF

“digest”

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

y, π

Some program F

hF

“digest”

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

Claimed result

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

y, π

Proof that response is correct
Some program F

hF

“digest”

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

Claimed result

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

y, π

Proof that response is correct
Some program F

hF

“digest”

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

Claimed result

𝖵𝖾𝗋𝗂𝖿𝗒(hF, 𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍, y, π)

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

y, π

Proof that response is correct
Some program F

hF

“digest”

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

Claimed result

𝖵𝖾𝗋𝗂𝖿𝗒(hF, 𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍, y, π)

Common requirement: Succinctness
(π is very small; 𝖵𝖾𝗋𝗂𝖿𝗒 is very fast)

General Cryptographic Proofs
“Computational Integrity”

Server (Prover)
Client (Verifier)

y, π

Proof that response is correct
Some program F

hF

“digest”

Client would like to learn 
 the value of F(𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍)

Claimed result

𝖵𝖾𝗋𝗂𝖿𝗒(hF, 𝗌𝗈𝗆𝖾𝖨𝗇𝗉𝗎𝗍, y, π)

Common requirement: Succinctness
(π is very small; 𝖵𝖾𝗋𝗂𝖿𝗒 is very fast)

* Fine print for the cryptographers: this slide mostly refers to SNARKs.

Back to Verifiable Databases

Verifiable Databases (VDB)

Server (Prover)
Client (Verifier)

Computationally “weak” client;
not going to store the DB

Verifiable Databases (VDB)

Server (Prover)
Client (Verifier)

Computationally “weak” client;
not going to store the DB

during some offline stage

DB, digest(DB)

Verifiable Databases (VDB)

Server (Prover)
Client (Verifier)

Computationally “weak” client;
not going to store the DB

during some offline stage

DB, digest(DB)

query

Verifiable Databases (VDB)

Server (Prover)
Client (Verifier)

response, π

Computationally “weak” client;
not going to store the DB

during some offline stage

DB, digest(DB)

query

Verifiable Databases (VDB)

Server (Prover)
Client (Verifier)

response, π

Computationally “weak” client;
not going to store the DB

during some offline stage

DB, digest(DB)

query

Proof that response is correct

Desirable Features in Verifiable Databases

Efficiency-related Security-related

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)

Efficiency-related Security-related

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable

Efficiency-related Security-related

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust

levels of data traces

Efficiency-related Security-related

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust

levels of data traces
• Non-interactive, and with short

proofs

Efficiency-related Security-related

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust

levels of data traces
• Non-interactive, and with short

proofs
• especially important in smart

contracts

Efficiency-related Security-related

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust

levels of data traces
• Non-interactive, and with short

proofs
• especially important in smart

contracts

Efficiency-related Security-related

• Based on solid cryptographic
assumptions (of course)

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust

levels of data traces
• Non-interactive, and with short

proofs
• especially important in smart

contracts

Efficiency-related Security-related

• Based on solid cryptographic
assumptions (of course)

• Also simple

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust

levels of data traces
• Non-interactive, and with short

proofs
• especially important in smart

contracts

Efficiency-related Security-related

• Based on solid cryptographic
assumptions (of course)

• Also simple
• → easily auditable; easier to

reason about

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust

levels of data traces
• Non-interactive, and with short

proofs
• especially important in smart

contracts

Efficiency-related Security-related

• Based on solid cryptographic
assumptions (of course)

• Also simple
• → easily auditable; easier to

reason about
• → less vulnerable

Desirable Features in Verifiable Databases

• Efficient (prover and verifier)
• Publicly-verifiable
• important to establish trust

levels of data traces
• Non-interactive, and with short

proofs
• especially important in smart

contracts

Efficiency-related Security-related

• Based on solid cryptographic
assumptions (of course)

• Also simple
• → easily auditable; easier to

reason about
• → less vulnerable
• → more maintainable; easier to

patch

Common Tradeoffs in Verifiable DB

Common Tradeoffs in Verifiable DB

More/Less Expressive

More/Less Practical 

More/Less Simple 
& Secure

Common Tradeoffs in Verifiable DB

More/Less Expressive

More/Less Practical 

More/Less Simple 
& Secure

simple 
queries

complex 
queries

Common Tradeoffs in Verifiable DB

More/Less Expressive

More/Less Practical 

More/Less Simple 
& Secure

simple 
queries

complex 
queries

(this talk: only “SQL” DBs)

Common Tradeoffs in Verifiable DB

More/Less Expressive

More/Less Practical 

More/Less Simple 
& Secure

simple 
queries

complex 
queries

small proofs, 
fast prover,…

slower, 
larger proofs

(this talk: only “SQL” DBs)

Common Tradeoffs in Verifiable DB

More/Less Expressive

More/Less Practical 

More/Less Simple 
& Secure

simple 
queries

complex 
queries

small proofs, 
fast prover,…

slower, 
larger proofs

reliable assumptions, 
small tech stack

heuristic assumptions, 
lots of moving parts

(this talk: only “SQL” DBs)

The existing landscape of
verifiable databases

How do we build verifiable databases?

How do we build verifiable databases?

Computational 
Integrity 

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

General
Cryptographic

Proofs

How do we build verifiable databases?

Computational 
Integrity 

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

General
Cryptographic

Proofs

VDBs
? ?

How do we build verifiable databases?

Computational 
Integrity 

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

General
Cryptographic

Proofs

VDBs
? ?

DB as object/DS; 
result of query as property

How do we build verifiable databases?

Computational 
Integrity 

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

General
Cryptographic

Proofs

VDBs
? ?

DB as object/DS; 
result of query as property

SQL queries as general 
computation

How do we build verifiable databases?

Computational 
Integrity 

More traditional notions 
of integrity 

Signatures
Hashing

More fine-grained notions 
of integrity 

(integrity as guarantee of a 
data structure satisfying a property)

Authenticated
Data Structures

(Merkle Trees, …)

General
Cryptographic

Proofs

VDBs
? ?

DB as object/DS; 
result of query as property

SQL queries as general 
computation

In fact, both are used.  
And they lead to different tradeoffs

Expressivity Practicality

Security & Simplicity

The Landscape of Verifiable DBs

Expressivity Practicality

Security & Simplicity

General proofs & recursion 
(Lagrange Labs, Axiom,…)

The Landscape of Verifiable DBs

Expressivity Practicality

Security & Simplicity

vSQL 
(S&P 2017)

General proofs & recursion 
(Lagrange Labs, Axiom,…)

The Landscape of Verifiable DBs

General proofs

Expressivity Practicality

Security & Simplicity

vSQL 
(S&P 2017)

General proofs & recursion 
(Lagrange Labs, Axiom,…)

Auth. Data
Structures 

(mostly accumulators)

The Landscape of Verifiable DBs

General proofs

Expressivity Practicality

Security & Simplicity

vSQL 
(S&P 2017)

General proofs & recursion 
(Lagrange Labs, Axiom,…)

Auth. Data
Structures 

(mostly accumulators)

The Landscape of Verifiable DBs

General proofs

(~2009-2015)

Expressivity Practicality

Security & Simplicity

vSQL 
(S&P 2017)

General proofs & recursion 
(Lagrange Labs, Axiom,…)

Auth. Data
Structures 

(mostly accumulators)

The Landscape of Verifiable DBs

General proofs

(~2009-2015)

(2017)

Expressivity Practicality

Security & Simplicity

vSQL 
(S&P 2017)

General proofs & recursion 
(Lagrange Labs, Axiom,…)

Auth. Data
Structures 

(mostly accumulators)

The Landscape of Verifiable DBs

General proofs

(~2009-2015)

(2017)

(2023-now)

Expressivity Practicality

Security & Simplicity

vSQL 
(S&P 2017)

General proofs & recursion 
(Lagrange Labs, Axiom,…)

qedb 
(this work)

Auth. Data
Structures 

(mostly accumulators)

The Landscape of Verifiable DBs

General proofs

(~2009-2015)

(2017)

(2023-now)

Expressivity Practicality

Security & Simplicity

vSQL 
(S&P 2017)

General proofs & recursion 
(Lagrange Labs, Axiom,…)

qedb 
(this work)

Auth. Data
Structures 

(mostly accumulators)

The Landscape of Verifiable DBs

General proofs

(~2009-2015)

(2017)

(2023-now)

(2025)

This Talk’s Thesis
qedb 

This Talk’s Thesis

VDBs can be simple, expressive and efficient

qedb 

This Talk’s Thesis

• New construction for the SQL setting (without SNARKs)

VDBs can be simple, expressive and efficient

qedb 

This Talk’s Thesis

• New construction for the SQL setting (without SNARKs)
• qedb*

VDBs can be simple, expressive and efficient

* qedb is a recursive acronym standing for “qedb error-checks databases”. 
 It is also a shameless pun on it being a proof system for DBs.

qedb 

This Talk’s Thesis

• New construction for the SQL setting (without SNARKs)
• qedb*

• New techniques

VDBs can be simple, expressive and efficient

* qedb is a recursive acronym standing for “qedb error-checks databases”. 
 It is also a shameless pun on it being a proof system for DBs.

qedb 

This Talk’s Thesis

• New construction for the SQL setting (without SNARKs)
• qedb*

• New techniques
• New foundations

VDBs can be simple, expressive and efficient

* qedb is a recursive acronym standing for “qedb error-checks databases”. 
 It is also a shameless pun on it being a proof system for DBs.

qedb 

This Talk’s Thesis

• New construction for the SQL setting (without SNARKs)
• qedb*

• New techniques
• New foundations

VDBs can be simple, expressive and efficient

* qedb is a recursive acronym standing for “qedb error-checks databases”. 
 It is also a shameless pun on it being a proof system for DBs.

qedb is a joint work with 
V. Botta, S. Bottoni, E. Ragnoli, A. Trombetta.

qedb 

Zooming in on General-Purpose
Solutions

Some Preliminaries on General-Purpose Proofs

Some Preliminaries on General-Purpose Proofs

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

Main pain points:

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

Main pain points:
• prover hard to parallelize + high-memory

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(from ~2022)
From circuits to virtual

machines 
(through recursion)

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(from ~2022)
From circuits to virtual

machines 
(through recursion)

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(from ~2022)
From circuits to virtual

machines 
(through recursion)

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

parallel  
proving

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(from ~2022)
From circuits to virtual

machines 
(through recursion)

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

parallel  
proving

final 
proof

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(from ~2022)
From circuits to virtual

machines 
(through recursion)

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

parallel  
proving

final 
proof

recursion  
(proving
proofs)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(from ~2022)
From circuits to virtual

machines 
(through recursion)

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

trace of a program 
in a VM

parallel  
proving

final 
proof

recursion  
(proving
proofs)

Some Preliminaries on General-Purpose Proofs

Great proof size: < 0.2 KB
Great verification time: few ms

OK proving time: e.g., ~ 2 minutes 
to prove SHA256 of a 15KB file

few 10s of seconds 
with GPU

small proofs 
worse proving

larger proofs 
better proving

{*
*

(from ~2022)
From circuits to virtual

machines 
(through recursion)

Main pain points:
• prover hard to parallelize + high-memory
• developer experience (circuits)

(~2010s)
Many advancements 

(circuits-based)

trace of a program 
in a VM

parallel  
proving

final 
proof

recursion  
(proving
proofs)

Because of the VM trace, developers can just write code
(e.g., Rust) that gets compiled to the VM (instead of circuits)

vSQL
[IEEE S&P 2017]

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

• At the time, this was a big improvement on the proving performance of other
solutions [e.g. Groth16]

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

• At the time, this was a big improvement on the proving performance of other
solutions [e.g. Groth16]

• vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

• At the time, this was a big improvement on the proving performance of other
solutions [e.g. Groth16]

• vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])
• Drawbacks:

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

• At the time, this was a big improvement on the proving performance of other
solutions [e.g. Groth16]

• vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])
• Drawbacks:
• Requires implementing circuits emulating SQL

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

• At the time, this was a big improvement on the proving performance of other
solutions [e.g. Groth16]

• vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])
• Drawbacks:
• Requires implementing circuits emulating SQL
• Not great for developer experience

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

• At the time, this was a big improvement on the proving performance of other
solutions [e.g. Groth16]

• vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])
• Drawbacks:
• Requires implementing circuits emulating SQL
• Not great for developer experience
• Also cumbersome: a naive set intersection in a circuit has a quadratic

overhead

vSQL
[IEEE S&P 2017]

• Key observation of vSQL:
• to save on proving time, use a “lightweight” general-purpose proof system

(based on circuits) and customize it a little bit to the DB setting
• [for the cryptographers: essentially “GKR specialized to DBs”]

• At the time, this was a big improvement on the proving performance of other
solutions [e.g. Groth16]

• vSQL is very expressive (any SQL query); based on standard tools (e.g. [PST])
• Drawbacks:
• Requires implementing circuits emulating SQL
• Not great for developer experience
• Also cumbersome: a naive set intersection in a circuit has a quadratic

overhead
• Relatively large proof size (100s of KB); other performance limitations

The approach from SNARKs&Recursion

[Image credit: RiscZero]

The approach from SNARKs&Recursion

[Image credit: RiscZero]

The approach from SNARKs&Recursion

[Image credit: RiscZero]

just execution

The approach from SNARKs&Recursion

[Image credit: RiscZero]

just execution light-weight [STARK] prover  
for “base” proofs and recursion

The approach from SNARKs&Recursion

[Image credit: RiscZero]

just execution light-weight [STARK] prover  
for “base” proofs and recursion

More expensive proving  
with very short proofs

The approach from SNARKs&Recursion

[Image credit: RiscZero]

just execution light-weight [STARK] prover  
for “base” proofs and recursion

More expensive proving  
with very short proofs

although “lightweight” still requires 
tens-hundreds of GPU

The approach from SNARKs&Recursion

[Image credit: RiscZero]

just execution light-weight [STARK] prover  
for “base” proofs and recursion

More expensive proving  
with very short proofs

although “lightweight” still requires 
tens-hundreds of GPU

Overall expressive and efficient schemes 
(if one can put in the resources)

Drawback: Complexity

Drawback: Complexity

The final
proof system

Drawback: Complexity

Very complex tech stack. 
 
Hard to analyze, maintain, audit.

The final
proof system

Drawback: Extra Security Concerns

Drawback: Extra Security Concerns

• Security concern 1: complexity itself

Drawback: Extra Security Concerns

• Security concern 1: complexity itself
• More building blocks and layers → More bugs that are harder to spot

Drawback: Extra Security Concerns

• Security concern 1: complexity itself
• More building blocks and layers → More bugs that are harder to spot

• Security concern 2: cryptographic “hygiene” and assumptions

Drawback: Extra Security Concerns

• Security concern 1: complexity itself
• More building blocks and layers → More bugs that are harder to spot

• Security concern 2: cryptographic “hygiene” and assumptions
• Recursion depth?

Drawback: Extra Security Concerns

• Security concern 1: complexity itself
• More building blocks and layers → More bugs that are harder to spot

• Security concern 2: cryptographic “hygiene” and assumptions
• Recursion depth?
• Conjectures?

Drawback: Extra Security Concerns

• Security concern 1: complexity itself
• More building blocks and layers → More bugs that are harder to spot

• Security concern 2: cryptographic “hygiene” and assumptions
• Recursion depth?
• Conjectures?
• Random Oracle “as circuit”?

Final Drawback:

Final Drawback:

Final Drawback:

Is this the right way of “shaving” away the problem of Verifiable SQL?

General-purpose solutions—Summary

General-purpose solutions—Summary

• Extremely expressive ✓

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)
• short proof size / small verification cost

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)
• short proof size / small verification cost

• Sledgehammer approach to verifiable SQL ❌

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)
• short proof size / small verification cost

• Sledgehammer approach to verifiable SQL ❌
• Extremely complex tech stack ❌

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)
• short proof size / small verification cost

• Sledgehammer approach to verifiable SQL ❌
• Extremely complex tech stack ❌
• Hard to analyze and audit ❌

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)
• short proof size / small verification cost

• Sledgehammer approach to verifiable SQL ❌
• Extremely complex tech stack ❌
• Hard to analyze and audit ❌
• Suboptimal developer experience (especially if requires writing circuits) ❌

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)
• short proof size / small verification cost

• Sledgehammer approach to verifiable SQL ❌
• Extremely complex tech stack ❌
• Hard to analyze and audit ❌
• Suboptimal developer experience (especially if requires writing circuits) ❌
• Additional security risks (both from complexity and cryptographic heuristics) ❌

General-purpose solutions—Summary

• Extremely expressive ✓
• Can be very efficient ✓
• fast proving time (with the right number of GPU and investment)
• short proof size / small verification cost

• Sledgehammer approach to verifiable SQL ❌
• Extremely complex tech stack ❌
• Hard to analyze and audit ❌
• Suboptimal developer experience (especially if requires writing circuits) ❌
• Additional security risks (both from complexity and cryptographic heuristics) ❌

My claim: we may want to explore alternative approaches for verifiable SQL.

Verifiable DBs from
Authenticated Data Structures

Let’s talk about to then get to

prior work qedb (this work)

Quick Slide on Advancements in ADS

Quick Slide on Advancements in ADS

Recall:

Quick Slide on Advancements in ADS

Recall:
•accumulators: 
can prove y ∈ S

Quick Slide on Advancements in ADS

Recall:
•accumulators: 
can prove y ∈ S
•at times, can also prove set relations S ⊆ T, R ∪ S = T, …

Quick Slide on Advancements in ADS

Recall:
•accumulators: 
can prove y ∈ S
•at times, can also prove set relations S ⊆ T, R ∪ S = T, …

•vector commitments:  
 can prove (y1, y2, …, yℓ) = (⃗v[j])j∈J

Quick Slide on Advancements in ADS

Recall:
•accumulators: 
can prove y ∈ S
•at times, can also prove set relations S ⊆ T, R ∪ S = T, …

•vector commitments:  
 can prove (y1, y2, …, yℓ) = (⃗v[j])j∈J
•polynomial commitments: 
 can prove f(x) = y

Quick Slide on Advancements in ADS

Recall:
•accumulators: 
can prove y ∈ S
•at times, can also prove set relations S ⊆ T, R ∪ S = T, …

•vector commitments:  
 can prove (y1, y2, …, yℓ) = (⃗v[j])j∈J
•polynomial commitments: 
 can prove f(x) = y

Standard construction: 
Merkle Trees (from hashing)

has logarithmic-sized proof

Quick Slide on Advancements in ADS

Recall:
•accumulators: 
can prove y ∈ S
•at times, can also prove set relations S ⊆ T, R ∪ S = T, …

•vector commitments:  
 can prove (y1, y2, …, yℓ) = (⃗v[j])j∈J
•polynomial commitments: 
 can prove f(x) = y

Many advancements (2010s) 
from elliptic curves [pairings]

Standard construction: 
Merkle Trees (from hashing)

has logarithmic-sized proof

Quick Slide on Advancements in ADS

Recall:
•accumulators: 
can prove y ∈ S
•at times, can also prove set relations S ⊆ T, R ∪ S = T, …

•vector commitments:  
 can prove (y1, y2, …, yℓ) = (⃗v[j])j∈J
•polynomial commitments: 
 can prove f(x) = y

Many advancements (2010s) 
from elliptic curves [pairings]

Standard construction: 
Merkle Trees (from hashing)

has logarithmic-sized proof
accumulators, vector and 
polynomial commitments 
with O(1) sized proofs.

Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

Improves on the state of the art on 
ADS-based verifiable DBs:
• combines simple hash-based auth. interval trees 

with modern accumulators (from elliptic curves)

Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

Table by Yupeng Zhang (from IntegriDB presentation @ ACM CCS 2015).

Improves on the state of the art on 
ADS-based verifiable DBs:
• combines simple hash-based auth. interval trees 

with modern accumulators (from elliptic curves)

Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

Table by Yupeng Zhang (from IntegriDB presentation @ ACM CCS 2015).

Improves on the state of the art on 
ADS-based verifiable DBs:
• combines simple hash-based auth. interval trees 

with modern accumulators (from elliptic curves)

Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

Techniques in a nutshell:

Verifiable DBs from ADS (state of the art)
IntegriDB (CCS 2015)

Techniques in a nutshell:
• “collapses” sets of rows with specific intervals properties

(via accumulators)

• combines accumulators and authenticated interval trees

• proves OR/AND via set relation proofs

Pain Points of the State of the Art
(pain points of IntegriDB)

Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

Can easily get to hundreds of KB.
Grows with DB size.

Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

High computational requirements 
(proving and preprocessing)

Can easily get to hundreds of KB.
Grows with DB size.

Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

High computational requirements 
(proving and preprocessing)

Can easily get to hundreds of KB.
Grows with DB size.

Very memory intensive

Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

High computational requirements 
(proving and preprocessing)

Can easily get to hundreds of KB.
Grows with DB size.

Very memory intensive

Their techniques inherently
entail a quadratic overhead
in order to support JOINs

Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

High computational requirements 
(proving and preprocessing)

Constrained expressivity
and succinctness

Can easily get to hundreds of KB.
Grows with DB size.

Very memory intensive

Their techniques inherently
entail a quadratic overhead
in order to support JOINs

Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

High computational requirements 
(proving and preprocessing)

Constrained expressivity
and succinctness

Can easily get to hundreds of KB.
Grows with DB size.

Very memory intensive

Their techniques inherently
entail a quadratic overhead
in order to support JOINs

E.g., doesn’t support
comparison among columns

Pain Points of the State of the Art
(pain points of IntegriDB)

Proof Size is large

High computational requirements 
(proving and preprocessing)

Constrained expressivity
and succinctness

Can easily get to hundreds of KB.
Grows with DB size.

Very memory intensive

Their techniques inherently
entail a quadratic overhead
in order to support JOINs

E.g., doesn’t support
comparison among columns

Proof size/verification grows with
of duplicated elements in response

This work (qedb) addresses many of these
limitations

Core Thesis of qedb

• highly efficient

• highly expressive

• from simple building blocks

It is possible to design Verifiable DBs that are:

Core Thesis of qedb

• highly efficient

• highly expressive

• from simple building blocks

It is possible to design Verifiable DBs that are:
First scheme with proof size independent of |DB| 

Core Thesis of qedb

• highly efficient

• highly expressive

• from simple building blocks

It is possible to design Verifiable DBs that are:
First scheme with proof size independent of |DB| 

Can generate a proof in seconds on a
common laptop (for a 1M-sized DB)

Core Thesis of qedb

• highly efficient

• highly expressive

• from simple building blocks

It is possible to design Verifiable DBs that are:
First scheme with proof size independent of |DB| 

Can generate a proof in seconds on a
common laptop (for a 1M-sized DB)

 No quadratic behavior for JOINs 
 (through new techniques)

Core Thesis of qedb

• highly efficient

• highly expressive

• from simple building blocks

It is possible to design Verifiable DBs that are:
First scheme with proof size independent of |DB| 

Can generate a proof in seconds on a
common laptop (for a 1M-sized DB)

 No quadratic behavior for JOINs 
 (through new techniques)

More expressive than IntegriBD
and with none of the constraints
(through new techniques)

Core Thesis of qedb

• highly efficient

• highly expressive

• from simple building blocks

It is possible to design Verifiable DBs that are:
First scheme with proof size independent of |DB| 

Can generate a proof in seconds on a
common laptop (for a 1M-sized DB)

 No quadratic behavior for JOINs 
 (through new techniques)

More expressive than IntegriBD
and with none of the constraints
(through new techniques)

No general-purpose SNARKs. 
Instead: specialized vector
commitments and accumulators

Zooming in on Efficiency
Asymptotics

Zooming in on Efficiency
Asymptotics

Zooming in on Efficiency
Asymptotics

Zooming in on Efficiency
Asymptotics

Zooming in on Efficiency
Preliminary Experimental Evaluation (DB with 100K rows)

Zooming in on Efficiency
Preliminary Experimental Evaluation (DB with 100K rows)

Zooming in on Efficiency
Preliminary Experimental Evaluation (DB with 100K rows)

5x smaller than
IntegriDB’s

Zooming in on Efficiency
Preliminary Experimental Evaluation (DB with 100K rows)

5x smaller than
IntegriDB’s

One order of magnitude
smaller than IntegriDB’s

Zooming in on Efficiency
Preliminary Experimental Evaluation (DB with 100K rows)

Large time / proof size  
due to naive implementation 
of a range proof
subprotocol

5x smaller than
IntegriDB’s

One order of magnitude
smaller than IntegriDB’s

Zooming in on Expressivity

Zooming in on Expressivity

IntegriDB supports:

*

* Not always supported succinctly: loses succinct proof in case of duplicate elements.

Zooming in on Expressivity

qedb supports:
IntegriDB supports:

*

* Not always supported succinctly: loses succinct proof in case of duplicate elements.

Zooming in on Simplicity
A First Lens—Tech Stacks

Zooming in on Simplicity
A First Lens—Tech Stacks

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

Zooming in on Simplicity
A First Lens—Tech Stacks

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

KZG

Protocol “Atoms” and
Their Composition

A good B.Sc. student can
code this easily

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

FRI & STARKsGroth16

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

KZG

Protocol “Atoms” and
Their Composition

A good B.Sc. student can
code this easily

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

FRI & STARKsGroth16

Circuits* for STARK recursion

Circuits* for SQL

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

KZG

Protocol “Atoms” and
Their Composition

A good B.Sc. student can
code this easily

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

FRI & STARKsGroth16

Circuits* for STARK recursion

Circuits* for SQL

* or other representation 
(constraints or “ZK”-VM port)

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

KZG

Protocol “Atoms” and
Their Composition

A good B.Sc. student can
code this easily

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

FRI & STARKsGroth16

Circuits* for STARK recursion

Circuits* for SQL

* or other representation 
(constraints or “ZK”-VM port)

VM**

** if applicable

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

KZG

Protocol “Atoms” and
Their Composition

A good B.Sc. student can
code this easily

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A First Lens—Tech Stacks

FRI & STARKsGroth16

Segmenting Computations &
Recursion Tree Logic

Circuits* for STARK recursion

Circuits* for SQL

* or other representation 
(constraints or “ZK”-VM port)

VM**

** if applicable

“If you are stuck on a desert island and all you
have is a KZG setup, then you should still be
able to deploy a Verifiable DB in a few hours”

KZG

Protocol “Atoms” and
Their Composition

A good B.Sc. student can
code this easily

[For non cryptographers, KZG is arguably the “most popular”
polynomial commitment, common in deployed solutions also]

Zooming in on Simplicity
A Second Lens—Modularity

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good.

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good. Doing that by glueing simple protocols is best.

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good. Doing that by glueing simple protocols is best.

An apocryphal quote from the holy scriptures 
(i.e., left as a comment just before a macro

definitions in one of the early UNIX
implementations)

Thompson and Ritchie, creators of UNIX

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good. Doing that by glueing simple protocols is best.

An apocryphal quote from the holy scriptures 
(i.e., left as a comment just before a macro

definitions in one of the early UNIX
implementations)

Thompson and Ritchie, creators of UNIX

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

The qedb vision for Verifiable DBs (VDB) design:

Zooming in on Simplicity
A Second Lens—Modularity

Designing powerful protocols is good. Doing that by glueing simple protocols is best.

An apocryphal quote from the holy scriptures 
(i.e., left as a comment just before a macro

definitions in one of the early UNIX
implementations)

Thompson and Ritchie, creators of UNIX

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

The qedb vision for Verifiable DBs (VDB) design:

Separate algorithmic (or
information-theoretic) concerns
from the cryptographic ones

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)
3. Use the cryptographic compiler  

 → get security of final VDB for free

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)
3. Use the cryptographic compiler  

 → get security of final VDB for free

Implication 1: Want to improve the design of a VDB?  
Improve its building blocks OR the idealized blueprint.
Afterwards, no need to reprove security from scratch.

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)
3. Use the cryptographic compiler  

 → get security of final VDB for free

Implication 1: Want to improve the design of a VDB?  
Improve its building blocks OR the idealized blueprint.
Afterwards, no need to reprove security from scratch.

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)
3. Use the cryptographic compiler  

 → get security of final VDB for free

But we can push modularity further!

Implication 1: Want to improve the design of a VDB?  
Improve its building blocks OR the idealized blueprint.
Afterwards, no need to reprove security from scratch.

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)
3. Use the cryptographic compiler  

 → get security of final VDB for free

But we can push modularity further!

Implication 1: Want to improve the design of a VDB?  
Improve its building blocks OR the idealized blueprint.
Afterwards, no need to reprove security from scratch.

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)
3. Use the cryptographic compiler  

 → get security of final VDB for free

But we can push modularity further!

Implication 1: Want to improve the design of a VDB?  
Improve its building blocks OR the idealized blueprint.
Afterwards, no need to reprove security from scratch.

 vdb_compile_to_crypto = compile_to_ADS | compile_to_poly_comm

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)
3. Use the cryptographic compiler  

 → get security of final VDB for free

But we can push modularity further!

Implication 1: Want to improve the design of a VDB?  
Improve its building blocks OR the idealized blueprint.
Afterwards, no need to reprove security from scratch.

 vdb_compile_to_crypto = compile_to_ADS | compile_to_poly_comm

Implication 2: Want better building blocks? Just improve poly commitments.

Zooming in on Simplicity
A Second Lens—Modularity (continued)

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

Auth. Data Structures (ADS): 
special vector commitments  

and accumulators

The resulting design flow:
1. Design an “idealized” VDB 

 (don’t think about cryptography)
2. Prove its security in its own idealized model

(this is often very easy)
3. Use the cryptographic compiler  

 → get security of final VDB for free

But we can push modularity further!

Implication 1: Want to improve the design of a VDB?  
Improve its building blocks OR the idealized blueprint.
Afterwards, no need to reprove security from scratch.

 vdb_compile_to_crypto = compile_to_ADS | compile_to_poly_comm

Implication 2: Want better building blocks? Just improve poly commitments.

Implication 3: Get post-quantum VDB for free! (from lattice-based poly commitments)

Quick Digression: Idealized Models in SNARKs

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not
uncommon in SNARKs

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not
uncommon in SNARKs

• So what’s new here?

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not
uncommon in SNARKs

• So what’s new here?
• This was not a design pattern among VDBs from

ADS

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not
uncommon in SNARKs

• So what’s new here?
• This was not a design pattern among VDBs from

ADS
• Our idealized models are tailored to the DB setting

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not
uncommon in SNARKs

• So what’s new here?
• This was not a design pattern among VDBs from

ADS
• Our idealized models are tailored to the DB setting
• different “oracles” from those in SNARKs Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 

[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not
uncommon in SNARKs

• So what’s new here?
• This was not a design pattern among VDBs from

ADS
• Our idealized models are tailored to the DB setting
• different “oracles” from those in SNARKs
• SNARKs: polynomial evaluation

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not
uncommon in SNARKs

• So what’s new here?
• This was not a design pattern among VDBs from

ADS
• Our idealized models are tailored to the DB setting
• different “oracles” from those in SNARKs
• SNARKs: polynomial evaluation
• ours: vectors/sets-based (next slides)

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

Quick Digression: Idealized Models in SNARKs

• Splitting “idealized” and cryptographic parts is not
uncommon in SNARKs

• So what’s new here?
• This was not a design pattern among VDBs from

ADS
• Our idealized models are tailored to the DB setting
• different “oracles” from those in SNARKs
• SNARKs: polynomial evaluation
• ours: vectors/sets-based (next slides)

• Implication: no algebra; simpler model to
reason about

Idealized model for SNARKs (Polynomial Interactive Oracle Proofs, or PIOP) 
[Source: Anca Nitulescu’s zkSNARKs: A Gentle Introduction]

So Far

• Landscape of prior VDB design and limitations

• Quick overview of efficiency and design philosophy of qedb

• NEXT: more on idealized protocols for VDBs and intuitions about how qedb
works

Idealized VDBs

echo “SELECT * FROM T WHERE block_number = 0x123” | vdb_prover_no_crypto | vdb_compile_to_crypto

A Warm-up Example for Idealized VDBs

Consider a “query template” such as this:

A Warm-up Example for Idealized VDBs

example for SomeCondition:
C1 > 4 AND C2 = “OCL”

Consider a “query template” such as this:

A Warm-up Example for Idealized VDBs

example for SomeCondition:
C1 > 4 AND C2 = “OCL”

Consider a “query template” such as this:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
Client will receive a response Resp like this:

A Warm-up Example for Idealized VDBs

example for SomeCondition:
C1 > 4 AND C2 = “OCL”

Consider a “query template” such as this:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
Client will receive a response Resp like this:

(Claimed) Set of relevant
rows from column C

A Warm-up Example for Idealized VDBs

example for SomeCondition:
C1 > 4 AND C2 = “OCL”

Consider a “query template” such as this:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
Client will receive a response Resp like this:

(Claimed) Set of relevant
rows from column C

Values of column at rows X
(also claimed)

A Warm-up Example for Idealized VDBs

example for SomeCondition:
C1 > 4 AND C2 = “OCL”

Consider a “query template” such as this:

What could the client check to be persuaded that Resp is correct?

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
Client will receive a response Resp like this:

(Claimed) Set of relevant
rows from column C

Values of column at rows X
(also claimed)

A Warm-up Example for Idealized VDBs

example for SomeCondition:
C1 > 4 AND C2 = “OCL”

Consider a “query template” such as this:

What could the client check to be persuaded that Resp is correct?

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
Client will receive a response Resp like this:

(Claimed) Set of relevant
rows from column C

Values of column at rows X
(also claimed)

1. (right rows?)

2. (right values?) 

SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

handle to a set handle to a vector

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

handle to a set handle to a vector

Client can perform special checks on handles.

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

handle to a set handle to a vector

Client can perform special checks on handles. Example:

(“If I read from u at positions X do I get v?”)
checks whether

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

handle to a set handle to a vector

Client can perform special checks on handles. Example:

(“If I read from u at positions X do I get v?”)
checks whetherToy example:

P V

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

handle to a set handle to a vector

Client can perform special checks on handles. Example:

(“If I read from u at positions X do I get v?”)
checks whetherToy example:

P V

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

handle to a set handle to a vector

Client can perform special checks on handles. Example:

(“If I read from u at positions X do I get v?”)
checks whetherToy example:

P V

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

handle to a set handle to a vector

Client can perform special checks on handles. Example:

(“If I read from u at positions X do I get v?”)
checks whetherToy example:

P V
Send

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Let’s endow server/client with “special powers”:
Prover can send “pointers” (handles) to sets and vectors.

handle to a set handle to a vector

Client can perform special checks on handles. Example:

(“If I read from u at positions X do I get v?”)
checks whetherToy example:

P V
Send

Assert

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

A protocol sketch for the query above:
P V

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

Preprocessing: V holds a handle to the values in column C from an offline stage

A protocol sketch for the query above:
P V

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

𝖱𝖾𝗌𝗉 := (X, (yr)r∈X) Preprocessing: V holds a handle to the values in column C from an offline stage

A protocol sketch for the query above:
P V

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

𝖱𝖾𝗌𝗉 := (X, (yr)r∈X) Preprocessing: V holds a handle to the values in column C from an offline stage

A protocol sketch for the query above:
P V

Send

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

𝖱𝖾𝗌𝗉 := (X, (yr)r∈X) Preprocessing: V holds a handle to the values in column C from an offline stage

A protocol sketch for the query above:
P V

Send
Assert // checks condition 2 above

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

𝖱𝖾𝗌𝗉 := (X, (yr)r∈X) Preprocessing: V holds a handle to the values in column C from an offline stage

A protocol sketch for the query above:
P V

Send
Assert // checks condition 2 above

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

𝖱𝖾𝗌𝗉 := (X, (yr)r∈X) Preprocessing: V holds a handle to the values in column C from an offline stage

A protocol sketch for the query above:
P V

Send
Assert // checks condition 2 above

Run subprotocol for checking

A Warm-up Example for Idealized VDBs
(continued)

We want to check:

𝖱𝖾𝗌𝗉 = (X, (yr)r∈X)
(Claimed) Set of relevant
rows from column C

Values of column at rows X  
(also, claimed)1. (right rows?)

2. (right values?) 
SomeCondition(r) = ⊤ ⟺ r ∈ X
∀r ∈ X yr = C[r]

Special handles/“powers”

handle to a set handle to a vector
[plus more checks,
that are not relevant
at the moment]checks whether

𝖱𝖾𝗌𝗉 := (X, (yr)r∈X) Preprocessing: V holds a handle to the values in column C from an offline stage

A protocol sketch for the query above:
P V

Send
Assert // checks condition 2 above

Run subprotocol for checking

The Flow of an Idealized Protocols

The Flow of an Idealized Protocols

the verifier is endowed with.

General flow in an idealized protocol

The Flow of an Idealized Protocols

the verifier is endowed with.

General flow in an idealized protocol

Key role of handles (and their ops):  
providing expressivity, but also succinctness.

The Flow of an Idealized Protocols

the verifier is endowed with.

General flow in an idealized protocol

Key role of handles (and their ops):  
providing expressivity, but also succinctness.

“Atomic” Operations in an Idealized VDB

“Atomic” Operations in an Idealized VDB

“Atomic” Operations in an Idealized VDB

“Atomic” Operations in an Idealized VDB

“Atomic” Operations in an Idealized VDB

“Atomic” Operations in an Idealized VDB

“Atomic” Operations in an Idealized VDB

Q1: Are these operations expressive enough?

“Atomic” Operations in an Idealized VDB

Q2: Can we compile them through simple cryptographic building blocks?

Q1: Are these operations expressive enough?

Idealized Protocols are Very Expressive

From these:

Idealized Protocols are Very Expressive

From these:

We can get these (and more):

Idealized Protocols are Very Expressive

From these:

We can get these (and more):

Idealized Protocols are Very Expressive

From these:

We can get these (and more):

Idealized Protocols are Very Expressive

From these:

We can get these (and more):

From Idealized to Cryptographic VDB

From Idealized to Cryptographic VDB

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

From Idealized to Cryptographic VDB

accumulator linear-map vector commitment

We commit to handles:

Accumulators:

Vector Commitments:
+ linear-map opening:

The final construction: qedb

• qedb is simply a specific idealized VDB compiled “through KZG” (with the
approach from last slide)

The final construction: qedb

• qedb is simply a specific idealized VDB compiled “through KZG” (with the
approach from last slide)

The final construction: qedb

• qedb is simply a specific idealized VDB compiled “through KZG” (with the
approach from last slide)

The final construction: qedb

• qedb is simply a specific idealized VDB compiled “through KZG” (with the
approach from last slide)

Wrapping Up

Wrapping Up

• Simplicity is important both for real-world security and for research progress

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

• Framework behind qedb’s design is plausibly of independent interest

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

• Framework behind qedb’s design is plausibly of independent interest
• Future work:

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

• Framework behind qedb’s design is plausibly of independent interest
• Future work:

• Beyond SQL? (Key-Value, etc)

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

• Framework behind qedb’s design is plausibly of independent interest
• Future work:

• Beyond SQL? (Key-Value, etc)
• Zero-knowledge (hiding)

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

• Framework behind qedb’s design is plausibly of independent interest
• Future work:

• Beyond SQL? (Key-Value, etc)
• Zero-knowledge (hiding)
• A lookup-singularity for VDBs?

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

• Framework behind qedb’s design is plausibly of independent interest
• Future work:

• Beyond SQL? (Key-Value, etc)
• Zero-knowledge (hiding)
• A lookup-singularity for VDBs?
• Formally verified implementation?

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

• Framework behind qedb’s design is plausibly of independent interest
• Future work:

• Beyond SQL? (Key-Value, etc)
• Zero-knowledge (hiding)
• A lookup-singularity for VDBs?
• Formally verified implementation?

Thanks!

Wrapping Up

• Simplicity is important both for real-world security and for research progress
• Complicated SNARK-based stacks may often be an overkill and not worth the additional risks

• Research on VDBs from authenticated data structures has been stagnant for almost ten years
• qedb is a new VDB aiming at being:

• performant
• (can scale to million of rows; proof size independent of |DB|; verifier might even be directly on chain)

• astonishingly simple
• (an unsupervised LLM could implement it from its idealized description)

• Framework behind qedb’s design is plausibly of independent interest
• Future work:

• Beyond SQL? (Key-Value, etc)
• Zero-knowledge (hiding)
• A lookup-singularity for VDBs?
• Formally verified implementation?

Thanks!
Questions?

