
Matteo Campanelli

When Can We Incrementally Prove
Computations of Arbitrary Depth?

eprint:2025/1413

A joint work with 
Dario Fiore and Mahak Pancholi 
(IMDEA Software Institute)

Offchain Labs
University of Tartu, Estonia

www.binarywhales.com
matteo@offchainlabs.com

https://eprint.iacr.org/2025/1413
mailto:matteo@offchainlabs.com

This Talk in a Nutshell

This Talk in a Nutshell

A study of the security of
Incrementally Verifiable Computation (IVC) under
the lens of the depth of the proven computation.

This Talk in a Nutshell

A study of the security of
Incrementally Verifiable Computation (IVC) under
the lens of the depth of the proven computation.

Our main motivation:
how can we prove security (or insecurity)
when we move beyond constant depth?

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)
Client (Verifier)

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)
Client (Verifier)

Some program F

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)
Client (Verifier)

Some program F

Client would like to know 
whether ∃w : F(𝗑, 𝗐) = 1

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)
Client (Verifier)

 π

Some program F

Client would like to know 
whether ∃w : F(𝗑, 𝗐) = 1

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)
Client (Verifier)

 π

Proof that statement is true Some program F

Client would like to know 
whether ∃w : F(𝗑, 𝗐) = 1

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)
Client (Verifier)

 π

Proof that statement is true Some program F

Client would like to know 
whether ∃w : F(𝗑, 𝗐) = 1

𝖵𝖾𝗋𝗂𝖿𝗒(𝗑, π)

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)
Client (Verifier)

 π

Proof that statement is true Some program F

Client would like to know 
whether ∃w : F(𝗑, 𝗐) = 1

𝖵𝖾𝗋𝗂𝖿𝗒(𝗑, π)

Common requirement: Succinctness
(π is very small; 𝖵𝖾𝗋𝗂𝖿𝗒 is very fast)

Limitations of Traditional “Monolithic” Proofs

Limitations of Traditional “Monolithic” Proofs

• Large memory requirements

Limitations of Traditional “Monolithic” Proofs

• Large memory requirements

• whole “trace” of the computation should in principle be kept all in memory
at the same time

Limitations of Traditional “Monolithic” Proofs

• Large memory requirements

• whole “trace” of the computation should in principle be kept all in memory
at the same time

• No pipelining

Limitations of Traditional “Monolithic” Proofs

• Large memory requirements

• whole “trace” of the computation should in principle be kept all in memory
at the same time

• No pipelining

• Must finish the computation before starting proving

Limitations of Traditional “Monolithic” Proofs

• Large memory requirements

• whole “trace” of the computation should in principle be kept all in memory
at the same time

• No pipelining

• Must finish the computation before starting proving

• Cannot take advantage of incremental computations (next slide)

Incremental Computations

zi = F(zi−1, wi−1)

Incremental Computations

Examples of natural applications:

zi = F(zi−1, wi−1)

Incremental Computations

Examples of natural applications:
• Streaming algorithms

zi = F(zi−1, wi−1)

Incremental Computations

Examples of natural applications:
• Streaming algorithms
• RAM computations

zi = F(zi−1, wi−1)

Incremental Computations

Examples of natural applications:
• Streaming algorithms
• RAM computations
• Verifiable Delay Functions (VDF)

zi = F(zi−1, wi−1)

Incremental Computations

Examples of natural applications:
• Streaming algorithms
• RAM computations
• Verifiable Delay Functions (VDF)
• Round functions in symmetric primitives

zi = F(zi−1, wi−1)

Incremental Computations

Examples of natural applications:
• Streaming algorithms
• RAM computations
• Verifiable Delay Functions (VDF)
• Round functions in symmetric primitives
• Recurrent neural networks

zi = F(zi−1, wi−1)

Incremental Computations

Examples of natural applications:
• Streaming algorithms
• RAM computations
• Verifiable Delay Functions (VDF)
• Round functions in symmetric primitives
• Recurrent neural networks
• …

zi = F(zi−1, wi−1)

Incrementally Verifiable Computations (IVC)

Incrementally Verifiable Computations (IVC)

Proof size should be sublinear in the # of steps (the depth of the computation)

Incrementally Verifiable Computations (IVC)

Proof size should be sublinear in the # of steps (the depth of the computation)

Advantages

Incrementally Verifiable Computations (IVC)

Proof size should be sublinear in the # of steps (the depth of the computation)

• Low memory footprint

Advantages

Incrementally Verifiable Computations (IVC)

Proof size should be sublinear in the # of steps (the depth of the computation)

• Low memory footprint

• Pipelining opportunities

Advantages

Incrementally Verifiable Computations (IVC)

Proof size should be sublinear in the # of steps (the depth of the computation)

• Low memory footprint

• Pipelining opportunities

• Natural model for incremental
computations

Advantages

Incrementally Verifiable Computations (IVC)

Proof size should be sublinear in the # of steps (the depth of the computation)

• Low memory footprint

• Pipelining opportunities

• Natural model for incremental
computations

• Proofs can be distributed (e.g., in
settings with zero-knowledge)

Advantages

Constructions of IVC
(Practical or nearly-practical)

Constructions of IVC
(Practical or nearly-practical)

⇒

Constructions of IVC
(Practical or nearly-practical)

⇒

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

Canonical construction 
(SNARK recursion)

Constructions of IVC
(Practical or nearly-practical)

⇒

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

Canonical construction 
(SNARK recursion)

Constructions of IVC
(Practical or nearly-practical)

⇒

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

Canonical construction 
(SNARK recursion)

Constructions of IVC
(Practical or nearly-practical)

⇒

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

Canonical construction 
(SNARK recursion)

Lightweight version 
(folding/accumulation recursion)

Π.Verify

F

Folding/acc. Prover’s statement (Π is a folding/acc. scheme)
*

* very approximate rendition (there are more details)

Challenges in Proving the Security of IVC

Challenges in Proving the Security of IVC

• First challenge: idealized models and “theoretical hygiene”

Challenges in Proving the Security of IVC

• First challenge: idealized models and “theoretical hygiene”

Π.Verify

F

Random Oracle

H

Challenges in Proving the Security of IVC

• First challenge: idealized models and “theoretical hygiene”

Π.Verify

F

Random Oracle

H

Algebraic Group Model (AGM)

Challenges in Proving the Security of IVC

• First challenge: idealized models and “theoretical hygiene”

Π.Verify

F

Random Oracle

H

Algebraic Group Model (AGM)

“explanation”

Challenges in Proving the Security of IVC

• First challenge: idealized models and “theoretical hygiene”

• Second challenge (our focus): depth of the computation

Π.Verify

F

Random Oracle

H

Algebraic Group Model (AGM)

“explanation”

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

IVC extractability

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

IVC extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability
(poly time)

SNARK extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability

OBS:

(poly time)

SNARK extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability

OBS:

(poly time)

SNARK extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability

OBS:

(poly time)

SNARK extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability

OBS:

…

(poly time)

SNARK extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability

OBS:

…

(poly time)

SNARK extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability

OBS:

…

(poly time)

SNARK extractability
(poly time)

How Do We Usually Prove Security in IVC?
A glimpse of what can go wrong and what depth has to do with it

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

IVC extractability

OBS:

…

(poly time)

SNARK extractability
(poly time)

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

We extract h times. We want h to be O(1)

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

We extract h times. We want h to be O(1)
For that, choose branching factor O(λ).

The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

We extract h times. We want h to be O(1)
For that, choose branching factor O(λ).

This construction works but it is not the  
plain recursive construction from before anymore.

Why Does Security Beyond O(1) Depth Matters?
A digression on motivation

Why Does Security Beyond O(1) Depth Matters?
A digression on motivation

• Cryptographic settings

Why Does Security Beyond O(1) Depth Matters?
A digression on motivation

• Cryptographic settings

• VDFs

Why Does Security Beyond O(1) Depth Matters?
A digression on motivation

• Cryptographic settings

• VDFs

• requires ω(1) iterations

Why Does Security Beyond O(1) Depth Matters?
A digression on motivation

• Cryptographic settings

• VDFs

• requires ω(1) iterations

• Hashing and other symmetric key primitives

Why Does Security Beyond O(1) Depth Matters?
A digression on motivation

• Cryptographic settings

• VDFs

• requires ω(1) iterations

• Hashing and other symmetric key primitives

• round functions require ≈ λ iterations

Why Does Security Beyond O(1) Depth Matters?
A digression on motivation

• Cryptographic settings

• VDFs

• requires ω(1) iterations

• Hashing and other symmetric key primitives

• round functions require ≈ λ iterations

• General improved understanding of where we can use which constructions

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

Soundness for non-deterministic computations

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

Soundness for non-deterministic computations

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

Limitations

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

Soundness for non-deterministic computations

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

Limitations
Often it might not be warranted.

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

Soundness for non-deterministic computations

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

Limitations
Often it might not be warranted.
Modifies schemes (or applicable only at times)

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

Soundness for non-deterministic computations

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

Limitations
Often it might not be warranted.
Modifies schemes (or applicable only at times)
More complex, more inefficient

How the Community Has Addressed This—A Landscape

Using/proving secure 
schemes beyond

O(1) depth

more practically
relevant schemes

less practically
relevant schemes

includes “recursion-based”
schemes (including those

based on folding, etc.)

Soundness for deterministic F from batch arguments

Soundness for non-deterministic computations

YOLO:* (usually by practitioners) 
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Straight-Line Extraction

“Tree-approach” 
[Mangrove (CRYPTO24),…]

Limitations
Often it might not be warranted.
Modifies schemes (or applicable only at times)
More complex, more inefficient

Still open:
When are existing constructions

secure/insecure beyond O(1) depth?

This Work’s Question Still open:
When are existing constructions 

secure/insecure beyond O(1) depth?

The problem at hand

This Work’s Question Still open:
When are existing constructions 

secure/insecure beyond O(1) depth?

When is any construction secure/insecure
beyond O(1) depth?

The problem at hand

This Work’s Question Still open:
When are existing constructions 

secure/insecure beyond O(1) depth?

When is any construction secure/insecure
beyond O(1) depth?

We approach this question through two main conceptual lenses.

The problem at hand

Lens 1: “Depth” as a Core Object of Study

Lens 1: “Depth” as a Core Object of Study

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

??

Lens 1: “Depth” as a Core Object of Study

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

????

Lens 1: “Depth” as a Core Object of Study

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

????

??

Lens 1: “Depth” as a Core Object of Study

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

????

????

Lens 1: “Depth” as a Core Object of Study

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

????

????
??

Lens 1: “Depth” as a Core Object of Study

A note on abuse of language: 
I will say 
“big/bigger” to mean “fast/er growing”; 
“small/smaller” to mean “slow/er growing”

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

????

????
??

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

• The proof strategy that usually fails:

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

• The proof strategy that usually fails:
• In order to show extractability, show an extractor that succeeds in polynomial time.

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

• The proof strategy that usually fails:
• In order to show extractability, show an extractor that succeeds in polynomial time.

•Constructing such a machine is hard.

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

• The proof strategy that usually fails:
• In order to show extractability, show an extractor that succeeds in polynomial time.

•Constructing such a machine is hard.
•⇒ We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

• The proof strategy that usually fails:
• In order to show extractability, show an extractor that succeeds in polynomial time.

•Constructing such a machine is hard.
•⇒ We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

• soundness for deterministic computations (Adv. succeeds ⇒)zd = F(F(…F(F(z0))…))

d times

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

• The proof strategy that usually fails:
• In order to show extractability, show an extractor that succeeds in polynomial time.

•Constructing such a machine is hard.
•⇒ We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

• soundness for deterministic computations (Adv. succeeds ⇒)zd = F(F(…F(F(z0))…))

d times

• soundness for non-deterministic computations  
(Adv. succeeds ⇒)∃w0, …, wd−1 : zd = F(F(…F(F(z0, w0))…), wd−1)

d times

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

• The proof strategy that usually fails:
• In order to show extractability, show an extractor that succeeds in polynomial time.

•Constructing such a machine is hard.
•⇒ We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

• soundness for deterministic computations (Adv. succeeds ⇒)zd = F(F(…F(F(z0))…))

d times

• soundness for non-deterministic computations  
(Adv. succeeds ⇒)∃w0, …, wd−1 : zd = F(F(…F(F(z0, w0))…), wd−1)

d times

• another notion of (non-extractable) soundness that we introduce, but that is more expressive than the above.

Lens 2: Keeping Extractable Security in the Background
(And having in the foreground the relation [adversarial advantage] ↔ [depth])

• The proof strategy that usually fails:
• In order to show extractability, show an extractor that succeeds in polynomial time.

•Constructing such a machine is hard.
•⇒ We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

• soundness for deterministic computations (Adv. succeeds ⇒)zd = F(F(…F(F(z0))…))

d times

• soundness for non-deterministic computations  
(Adv. succeeds ⇒)∃w0, …, wd−1 : zd = F(F(…F(F(z0, w0))…), wd−1)

d times

• another notion of (non-extractable) soundness that we introduce, but that is more expressive than the above.
• ≈ incremental analogue of functional commitments

Our Results

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Some super-constant depth 
(e.g. poly(λ))

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Some super-constant depth 
(e.g. poly(λ))

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Some super-constant depth 
(e.g. poly(λ))

 “Weak” form of insecurity  
 (more on that in a second)

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Some super-constant depth 
(e.g. poly(λ))

 “Weak” form of insecurity  
 (more on that in a second)

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Some super-constant depth 
(e.g. poly(λ))

 “Weak” form of insecurity  
 (more on that in a second)

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Some super-constant depth 
(e.g. poly(λ))

 “Weak” form of insecurity  
 (more on that in a second)

Our Results
Our goals (distilled):
• finding tools to prove security/insecurity of any

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths.

* NB: in the eprint, the results are
presented in a different order.

Some super-constant depth 
(e.g. poly(λ))

 “Weak” form of insecurity  
 (more on that in a second)

Implication: 
to prove security at some ω(1) depth d, 
show some ω(1) depth D where this weak property holds. 

What Do We Mean by “Weak” Insecurity?

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

“Infinitely-often” soundness (io-SND):

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

“Infinitely-often” soundness (io-SND):

infinite set 
of parameters

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

“Infinitely-often” soundness (io-SND):

infinite set 
of parameters

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

“Infinitely-often” soundness (io-SND):

infinite set 
of parameters

Cryptographers do find i.o. security interesting:

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

“Infinitely-often” soundness (io-SND):

infinite set 
of parameters

Cryptographers do find i.o. security interesting:

[CRYPTO ’23]: builds i.o.-SND NIZKs from sub-exp CDH.

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

“Infinitely-often” soundness (io-SND):

infinite set 
of parameters

Cryptographers do find i.o. security interesting:

[CRYPTO ’23]: builds i.o.-SND NIZKs from sub-exp CDH.

[CRYPTO ’21,TCC ’24]: 
connect ∃ of i.o.-OWF to certain worst-case assumptions.

Our Results
(continued)

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC (e.g., secure at O(1) depth).

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC (e.g., secure at O(1) depth).

O(1) O(log²(λ)) O(λ)O(√λ)

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC (e.g., secure at O(1) depth).

? ?

O(1) O(log²(λ)) O(λ)O(√λ)

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC (e.g., secure at O(1) depth).

Case 1: security everywhere.

O(1) O(log²(λ)) O(λ)O(√λ)

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC (e.g., secure at O(1) depth).

Case 1: security everywhere.

O(1) O(log²(λ)) O(λ)O(√λ)

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC (e.g., secure at O(1) depth).

Case 1: security everywhere.

🎉
O(1) O(log²(λ)) O(λ)O(√λ)

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

⇒

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Stronger
adversary

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

???

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

Our Results
(continued)

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Q: Can an IVC exhibit it?

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Q: Can an IVC exhibit it?

A practical framing around graceful sec. degradation:

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Q: Can an IVC exhibit it?

A practical framing around graceful sec. degradation:

≈ better and better inverse poly-s

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Q: Can an IVC exhibit it?

A practical framing around graceful sec. degradation:

≈ better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Q: Can an IVC exhibit it?

A practical framing around graceful sec. degradation:

≈ better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

may offer tradeoffs to practitioners.

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Q: Can an IVC exhibit it?

Result (“no free snack” theorem):
Let Π be an IVC. Then:

A practical framing around graceful sec. degradation:

≈ better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

may offer tradeoffs to practitioners.

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Q: Can an IVC exhibit it?

Result (“no free snack” theorem):
Let Π be an IVC. Then:

A practical framing around graceful sec. degradation:

≈ better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

• either Π is secure at arbitrary polynomial depths, 

may offer tradeoffs to practitioners.

Our Results
(continued)

We call this (potential) pattern in IVC 
graceful security degradation

Motivating question for next result: 
Let Π be an IVC.

O(1) O(log²(λ)) O(λ)O(√λ)

Case 2: insecure somewhere.

Weaker 
adversary

Stronger
adversary

d’mid

p’ got “worse” from
the perspective of

adversary

d’’mid

…

Q: Can an IVC exhibit it?

Result (“no free snack” theorem):
Let Π be an IVC. Then:

A practical framing around graceful sec. degradation:

≈ better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

• either Π is secure at arbitrary polynomial depths, 
• or Π cannot exhibit graceful security degradation.

may offer tradeoffs to practitioners.

Our Results
(continued)

Our Results
(continued)

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Theorem (sublinear depths):
∃ IVC Π SND at depth λε (for some ε>0) 
⇒ ∃ IVC Π’ SND at arbitrary depth.
Overhead for P/V/proof size in Π’ is Oλ(1).

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Theorem (sublinear depths):
∃ IVC Π SND at depth λε (for some ε>0) 
⇒ ∃ IVC Π’ SND at arbitrary depth.
Overhead for P/V/proof size in Π’ is Oλ(1).

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Theorem (sublinear depths):
∃ IVC Π SND at depth λε (for some ε>0) 
⇒ ∃ IVC Π’ SND at arbitrary depth.
Overhead for P/V/proof size in Π’ is Oλ(1).

OBS: ρ can be ω(1).

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Theorem (sublinear depths):
∃ IVC Π SND at depth λε (for some ε>0) 
⇒ ∃ IVC Π’ SND at arbitrary depth.
Overhead for P/V/proof size in Π’ is Oλ(1).

OBS: ρ can be ω(1).

Theorem (general lifting):
∃ IVC Π SND at depth d 
⇒ ∃ IVC Π’ SND at depth D = dρ.
Overhead* for P/V/proof size in Π’ is Oλ(ρ)

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Theorem (sublinear depths):
∃ IVC Π SND at depth λε (for some ε>0) 
⇒ ∃ IVC Π’ SND at arbitrary depth.
Overhead for P/V/proof size in Π’ is Oλ(1).

OBS: ρ can be ω(1).

Theorem (general lifting):
∃ IVC Π SND at depth d 
⇒ ∃ IVC Π’ SND at depth D = dρ.
Overhead* for P/V/proof size in Π’ is Oλ(ρ)

*: amortized prover time; applies for linear TP(Π) 
 (if not linear additional polylog overhead).

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Theorem (sublinear depths):
∃ IVC Π SND at depth λε (for some ε>0) 
⇒ ∃ IVC Π’ SND at arbitrary depth.
Overhead for P/V/proof size in Π’ is Oλ(1).

OBS: ρ can be ω(1).

Theorem (general lifting):
∃ IVC Π SND at depth d 
⇒ ∃ IVC Π’ SND at depth D = dρ.
Overhead* for P/V/proof size in Π’ is Oλ(ρ)

*: amortized prover time; applies for linear TP(Π) 
 (if not linear additional polylog overhead).

Corollary:
∃ IVC SND at O(1) ⇒ 
∃ IVC Π’ SND at depth D = poly.

Our Results
(continued)

NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Theorem (sublinear depths):
∃ IVC Π SND at depth λε (for some ε>0) 
⇒ ∃ IVC Π’ SND at arbitrary depth.
Overhead for P/V/proof size in Π’ is Oλ(1).

OBS: ρ can be ω(1).

Theorem (general lifting):
∃ IVC Π SND at depth d 
⇒ ∃ IVC Π’ SND at depth D = dρ.
Overhead* for P/V/proof size in Π’ is Oλ(ρ)

*: amortized prover time; applies for linear TP(Π) 
 (if not linear additional polylog overhead).

Corollary:
∃ IVC SND at O(1) ⇒ 
∃ IVC Π’ SND at depth D = poly.

Special case: d = O(1); ρ = O(logλ)

When Do Our Results Apply?
For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒ NOTNOT

Black-box lifting with low overhead

When Do Our Results Apply?
For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒ NOTNOT

Black-box lifting with low overhead

• Soundness for deterministic and non-deterministic computations:

When Do Our Results Apply?
For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒ NOTNOT

Black-box lifting with low overhead

• Soundness for deterministic and non-deterministic computations:

• All results apply

When Do Our Results Apply?
For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒ NOTNOT

Black-box lifting with low overhead

• Soundness for deterministic and non-deterministic computations:

• All results apply

• Evaluation Binding for Incremental Functional Commitments (next slides)

When Do Our Results Apply?
For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒ NOTNOT

Black-box lifting with low overhead

• Soundness for deterministic and non-deterministic computations:

• All results apply

• Evaluation Binding for Incremental Functional Commitments (next slides)

• All results apply

When Do Our Results Apply?
For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒ NOTNOT

Black-box lifting with low overhead

• Soundness for deterministic and non-deterministic computations:

• All results apply

• Evaluation Binding for Incremental Functional Commitments (next slides)

• All results apply

• Extractability

When Do Our Results Apply?
For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒ NOTNOT

Black-box lifting with low overhead

• Soundness for deterministic and non-deterministic computations:

• All results apply

• Evaluation Binding for Incremental Functional Commitments (next slides)

• All results apply

• Extractability

• [io-sec at D ⇒ sec at d = o(D)] + [black-box lifting], both apply

When Do Our Results Apply?
For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒ NOTNOT

Black-box lifting with low overhead

• Soundness for deterministic and non-deterministic computations:

• All results apply

• Evaluation Binding for Incremental Functional Commitments (next slides)

• All results apply

• Extractability

• [io-sec at D ⇒ sec at d = o(D)] + [black-box lifting], both apply

• the result on graceful sec. degradation does not apply mostly 
because definitions do not translate immediately.

New Notion: Incremental
Functional Commitments

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

short

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

short

short

What are Functional Commitments? (FC)

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

short

short

Functional commitments generalize polynomial and vector commitments.

Security of Functional Commitments
Evaluation Binding

Malicious Prover Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

Security of Functional Commitments
Evaluation Binding

Malicious Prover Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

No adversary can succeed in providing inconsistent valid-looking outputs.

Security of Functional Commitments
Evaluation Binding

Malicious Prover Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

No adversary can succeed in providing inconsistent valid-looking outputs.

Security of Functional Commitments
Evaluation Binding

Malicious Prover Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

No adversary can succeed in providing inconsistent valid-looking outputs.

Security of Functional Commitments
Evaluation Binding

Malicious Prover Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

No adversary can succeed in providing inconsistent valid-looking outputs.

NB: intuitively stronger than deterministic and non-deterministic soundness 
 (but weaker than extractability).

Incrementality in Functional Commitments
Motivation

Incrementality in Functional Commitments
Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Incrementality in Functional Commitments
Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

Incrementality in Functional Commitments
Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

“Incremental” polynomial

Incrementality in Functional Commitments
Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

“Incremental” polynomial

Our contributions for IFC:

modeling, canonical construction, 
security proofs, connections to other results.

Wrapping Up
Summary and, where could one go from here?

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.
• Are there others?

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.
• Are there others?
• This gives a sufficient condition for security. Concrete ways of using it?

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.
• Are there others?
• This gives a sufficient condition for security. Concrete ways of using it?

• Lifting is always possible and does not require extractability (with efficient amortized prover)

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.
• Are there others?
• This gives a sufficient condition for security. Concrete ways of using it?

• Lifting is always possible and does not require extractability (with efficient amortized prover)
• The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (no

graceful security degradation)

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.
• Are there others?
• This gives a sufficient condition for security. Concrete ways of using it?

• Lifting is always possible and does not require extractability (with efficient amortized prover)
• The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (no

graceful security degradation)

• Other open questions:

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.
• Are there others?
• This gives a sufficient condition for security. Concrete ways of using it?

• Lifting is always possible and does not require extractability (with efficient amortized prover)
• The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (no

graceful security degradation)

• Other open questions:
• How to build Incremental Functional Commitments from falsifiable assumptions?

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.
• Are there others?
• This gives a sufficient condition for security. Concrete ways of using it?

• Lifting is always possible and does not require extractability (with efficient amortized prover)
• The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (no

graceful security degradation)

• Other open questions:
• How to build Incremental Functional Commitments from falsifiable assumptions?
• Can we prove the security/insecurity of concrete existing systems (with these or other techniques)?

Wrapping Up
Summary and, where could one go from here?

• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so

interconnected.
• Are there others?
• This gives a sufficient condition for security. Concrete ways of using it?

• Lifting is always possible and does not require extractability (with efficient amortized prover)
• The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (no

graceful security degradation)

• Other open questions:
• How to build Incremental Functional Commitments from falsifiable assumptions?
• Can we prove the security/insecurity of concrete existing systems (with these or other techniques)?

Thank you! Questions?

Extra slide on graceful sec. degradation

Extra slide on io-soundness

