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This Talk in a Nutshell

A study of the security of 
Incrementally Verifiable Computation (IVC) under 
the lens of the depth of the proven computation.

Our main motivation: 
how can we prove security (or insecurity) 
when we move beyond constant depth?
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Succinct Cryptographic Proofs (SNARKs)

Server (Prover)
Client (Verifier)

 π

Proof that statement is true Some program F

Client would like to know 
whether ∃w : F(𝗑, 𝗐) = 1

𝖵𝖾𝗋𝗂𝖿𝗒(𝗑, π)

Common requirement: Succinctness 
(π is very small; 𝖵𝖾𝗋𝗂𝖿𝗒 is very fast)
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Limitations of Traditional “Monolithic” Proofs

• Large memory requirements

• whole “trace” of the computation should in principle be kept all in memory 
at the same time

• No pipelining

• Must finish the computation before starting proving

• Cannot take advantage of incremental computations (next slide)
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Incremental Computations

Examples of natural applications:
• Streaming algorithms
• RAM computations
• Verifiable Delay Functions (VDF)
• Round functions in symmetric primitives
• Recurrent neural networks
• …

zi = F(zi−1, wi−1)
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Incrementally Verifiable Computations (IVC)

Proof size should be sublinear in the # of steps (the depth of the computation)

• Low memory footprint

• Pipelining opportunities

• Natural model for incremental 
computations

• Proofs can be distributed (e.g., in 
settings with zero-knowledge)

Advantages
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Constructions of IVC
(Practical or nearly-practical)

⇒

Π.Verify

F

SNARK Prover’s statement (Π is a SNARK)

Canonical construction 
(SNARK recursion)

Lightweight version 
(folding/accumulation recursion)

Π.Verify

F

Folding/acc. Prover’s statement (Π is a folding/acc. scheme)
*

* very approximate rendition (there are more details)
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Challenges in Proving the Security of IVC

• First challenge: idealized models and “theoretical hygiene”

• Second challenge (our focus): depth of the computation

Π.Verify

F

Random Oracle

H

Algebraic Group Model (AGM)

“explanation”
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The “Tree Approach”
A canonical way to go around the problem we just saw (via extractability)

Idea: proceed in a tree fashion 
rather than along a path.

We extract h times. We want h to be O(1)
For that, choose branching factor O(λ).

This construction works but it is not the  
plain recursive construction from before anymore.
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Why Does Security Beyond O(1) Depth Matters?
A digression on motivation

• Cryptographic settings

• VDFs

• requires ω(1) iterations

• Hashing and other symmetric key primitives

• round functions require ≈ λ iterations

• General improved understanding of where we can use which constructions
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This Work’s Question Still open: 
When are existing constructions 

secure/insecure beyond O(1) depth?

When is any construction secure/insecure 
beyond O(1) depth?

We approach this question through two main conceptual lenses.

The problem at hand
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Lens 1: “Depth” as a Core Object of Study

A note on abuse of language: 
I will say 
“big/bigger” to mean “fast/er growing”; 
“small/smaller” to mean “slow/er growing”

O(1) O(log²(λ)) O(λ)O(√λ)

??

The asymptotic depth “line”.

????

????
??
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Our Results
Our goals (distilled): 
• finding tools to prove security/insecurity of any 

construction (including efficient existing ones).

• studying IVC depth and its relation to security  

as a subject in its own right.

First result*: 
“weak insecurity” at big depths ⇒ security at smaller depths. 

* NB: in the eprint, the results are 
presented in a different order.

Some super-constant depth 
(e.g. poly(λ) )

   “Weak” form of insecurity  
     (more on that in a second)

Implication: 
to prove security at some ω(1) depth d, 
show some ω(1) depth D where this weak property holds. 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:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

“Infinitely-often” soundness (io-SND):

infinite set 
of parameters

Cryptographers do find i.o. security interesting:

[CRYPTO ’23]: builds i.o.-SND NIZKs from sub-exp CDH.

[CRYPTO ’21,TCC ’24]: 
connect ∃ of i.o.-OWF to certain worst-case assumptions. 
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p’ got “worse” from 
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…

Q: Can an IVC exhibit it? 

Result (“no free snack” theorem): 
Let Π be an IVC. Then: 

A practical framing around graceful sec. degradation:

≈ better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

• either Π is secure at arbitrary polynomial depths, 
• or Π cannot exhibit graceful security degradation.

may offer tradeoffs to practitioners.
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NB: We are interested in: 
 • black-box lifting results, 
 • and that preserve performance.

Theorem (sublinear depths): 
∃ IVC Π SND at depth λε (for some ε>0) 
⇒ ∃ IVC Π’ SND at arbitrary depth. 
Overhead for P/V/proof size in Π’ is Oλ(1).

OBS: ρ can be ω(1).

Theorem (general lifting): 
∃ IVC Π SND at depth d 
⇒ ∃ IVC Π’ SND at depth D = dρ. 
Overhead* for P/V/proof size in Π’ is Oλ(ρ)

*: amortized prover time; applies for linear TP(Π) 
   (if not linear additional polylog overhead).

Corollary: 
∃ IVC SND at O(1) ⇒ 
∃ IVC Π’ SND at depth D = poly.

Special case: d = O(1); ρ = O(logλ)
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For what security notions do they hold?

io-sec at D ⇒ sec at d = o(D)

Insecure IVCs cannot exhibit graceful sec. degradation

⇒  NOTNOT

Black-box lifting with low overhead

• Soundness for deterministic and non-deterministic computations:

• All results apply

• Evaluation Binding for Incremental Functional Commitments (next slides)

• All results apply

• Extractability

• [io-sec at D ⇒ sec at d = o(D)] + [black-box lifting], both apply

• the result on graceful sec. degradation does not apply mostly 
because definitions do not translate immediately. 
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Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

short

short

Functional commitments generalize polynomial and vector commitments.
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Security of Functional Commitments
Evaluation Binding

Malicious Prover Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

No adversary can succeed in providing inconsistent valid-looking outputs.

NB: intuitively stronger than deterministic and non-deterministic soundness 
       (but weaker than extractability).
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Motivation

Our goal: 

committing and  (especially) proving should be doable in an incremental manner.

Example applications:  

“streaming” polynomial commitments and neural network evaluation.

“Incremental” polynomial 

Our contributions for IFC: 

modeling, canonical construction, 
security proofs, connections to other results.
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• This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

• Moderately intriguing findings (at least to me):
• IVC might be the only primitive where infinitely-often and almost-everywhere security are so 

interconnected. 
• Are there others?
• This gives a sufficient condition for security. Concrete ways of using it?

• Lifting is always possible and does not require extractability (with efficient amortized prover)
• The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (no 

graceful security degradation)

• Other open questions:
• How to build Incremental Functional Commitments from falsifiable assumptions?
• Can we prove the security/insecurity of concrete existing systems (with these or other techniques)?

Thank you! Questions?
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