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A study of the security of
Incrementally Verifiable Computation (IVC) under
the lens of the depth of the proven computation.

Our main motivation:
how can we prove security (or insecurity)
when we move beyond constant depth?
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Proof that statement is true

Some program F

Server (Prover) Verify(x, )

Client (Verifier)

Common requirement: Succinctness

7 is very small; Verify is very fast Client would like to know
whether dw : F(x,w) =1
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Limitations of Traditional “Monolithic” Proofs

* | arge memory requirements

 whole “trace” of the computation should in principle be kept all in memory
at the same time

* No pipelining
* Must finish the computation before starting proving

 Cannot take advantage of incremental computations (next slide)
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* Pipelining opportunities

e Natural model for incremental
computations

° * Proofs can be distributed (e.g., in
settings with zero-knowledge)

Proof size should be sublinear in the # of steps (the depth of the computation)
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Constructions of IVC

(Practical or nearly-practical)

SNARK Prover’s statement (I'1is a SNARK)

Canonical construction
(SNARK recursion)

Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes

Abhiram Kothapalli Srinath Setty™* Ioanna Tziallat

TCarnegie Mellon University *Microso ft Researc h *New York University

Proof-Carrying Data without Succinct Arguments

benedikt@cs.stanford.edu = alexch@berkeley.edu

will.lin@berkeley.edu  pratyush@berkeley.edu  nspooner@bu.edu

Folding/acc. Prover’s statement ([1 is a folding/acc. scheme)

Lightweight version
(folding/accumulation recursion)

* very approximate rendition (there are more details)
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* First challenge: idealized models and “theoretical hygiene”
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Random Oracle Algebraic Group Model (AGM)

 Second challenge (our focus): depth of the computation
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A note on abuse of language:

| will say

“big/bigger” to mean “fast/er growing?;
“small/smaller” to mean “slow/er growing”
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* The proof strategy that usually fails:
* In order to show extractability, show an extractor that succeeds in polynomial time.

» Constructing such a machine is hard.
* = We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

* soundness for deterministic computations (Adv. succeeds = z, = F(F(...F(F(zy))...)))

d times
« soundness for non-deterministic computations

d times

» another notion of (hon-extractable) soundness that we introduce, but that is more expressive than the above.
e ~ Incremental analogue of functional commitments
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New Notion: Incremental
Functional Commitments
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Functional commitments generalize polynomial and vector commitments.

Credit to Dario Fiore for the graphics in the center.



Security of Functional Commitments

Evaluation Binding

- -

£
e . P Ay sy T

Client (Verifier)

Malicious Prover

Credit to Dario Fiore for the graphics in the center.



Security of Functional Commitments

Evaluation Binding

Malicious Prover Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

Credit to Dario Fiore for the graphics in the center.



Security of Functional Commitments

Evaluation Binding

X f; ﬂ.fa ya ﬂ]z, y,
YFY

Malicious Prover Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

Credit to Dario Fiore for the graphics in the center.



Security of Functional Commitments

Evaluation Binding

v GEUIRRY

X f; ﬂ.fa ya ﬂ]z, y,

y#FY
Ver(Cyof,¥, 7) = 1
Ver(Cy. £, ) = 1
Malicious Prover Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

Credit to Dario Fiore for the graphics in the center.



Security of Functional Commitments

Evaluation Binding

X f; ﬂ:fa ya ﬂ]z, y,

“;«\ -\","/l_ A

- UL ALALE

y#FY
Ver(Cyof,¥, 7) = 1
Ver(C,.f,Y/, nji) =1
Malicious Prover Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

NB: intuitively stronger than deterministic and non-deterministic soundness

(bUt weaker than eXtraCtablhty)' Credit to Dario Fiore for the graphics in the center.



Incrementality in Functional Commitments

Motivation




Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.



Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.



Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

@ wo = Co w1 = C1 Ws—1 ‘= C5—1
2] Z2 A .
: N Al —~— “ o N 6 —1 N f
- @o (&, o) (0o + ter) (" 9(t)
- ——N Fenk N Fenk - —H Fenk ?
A w .

Fcnk(ztpowa yaccj; /(’\) = (Z ) tPOW’ Yace * tpow T E)

“Incremental” polvnomial



Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.
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Extra slide on graceful sec. degradation

always exists a superconstant depth bound L such that for all i, R; > L.

Theorem 6. Given any sequence of superconstant—i.e., w(1)—depth bounds Ry, R1, Rs, ..., there



Extra slide on 10-soundness

Theorem (Informal statement of Corollary 1). Let II be an IVC scheme and D = w(1) be a
depth bound. Let E C N be an infinite and “exponentially sparse” set of security parameters where I
achieves negligible soundness at depth bound D. Then there exists a depth bound d = w(1) where II

achieves (standard) negligible soundness.

Theorem (Informal statement of Corollary 2). Let II,D = w(1), and E as in the previous
theorem. Then:

o E exponentially sparse —> d = O(logD).
o FE sub-exponentially sparse =—> d = O(polylogD).

Theorem 3. Let E = {\; < Ao < ---} C N be a constructible (25 )-sparse set for some T with
0<T <1. Let IT be an IVC that is i.0-sound with respect to E for depth bound D(-). Let d'(-) be a
depth bound. If for all 1 € N,

d' (Aig1 —1) <D (N), (A)

then II is (almost-everywhere) sound for depth bound d' if appropriately parameterized (Definition 3).
The resulting proving time, verification time and proof size are like those originally in II (up to
constant factors).



