

When Can We Incrementally Prove Computations of Arbitrary Depth?

Matteo Campanelli

Offchain Labs
University of Tartu, Estonia

matteo@offchainlabs.com
www.binarywhales.com

eprint:2025/1413

A joint work with
Dario Fiore and Mahak Pancholi
(IMDEA Software Institute)

This Talk in a Nutshell

This Talk in a Nutshell

A study of the security of
Incrementally Verifiable Computation (IVC) under
the lens of the depth of the proven computation.

This Talk in a Nutshell

A study of the security of
Incrementally Verifiable Computation (IVC) under
the lens of the depth of the proven computation.

Our main motivation:
how can we prove security (or insecurity)
when we move beyond constant depth?

Succinct Cryptographic Proofs (SNARKs)

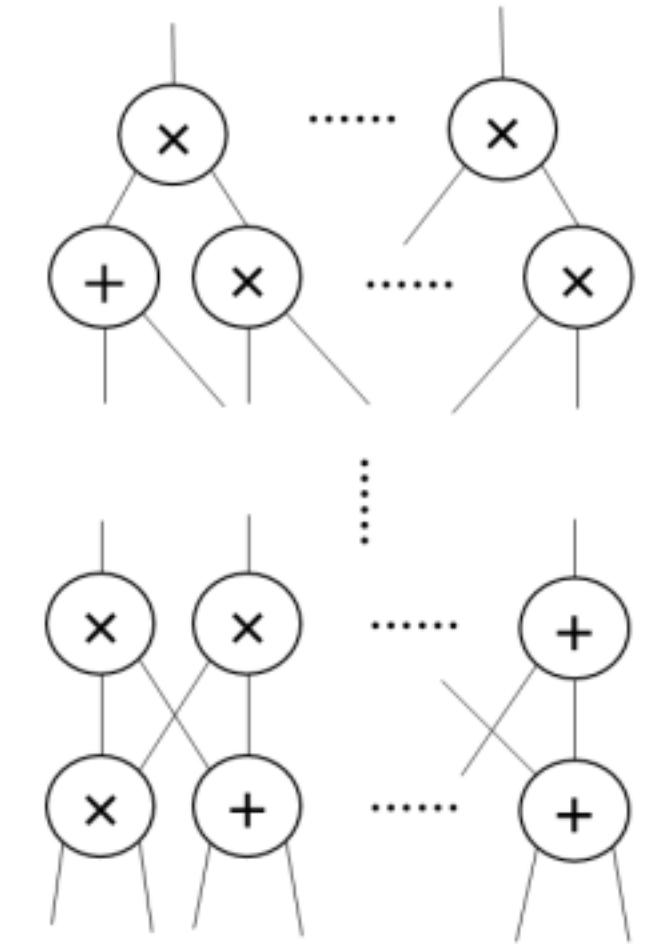
Server (Prover)

Client (Verifier)

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)

Client (Verifier)

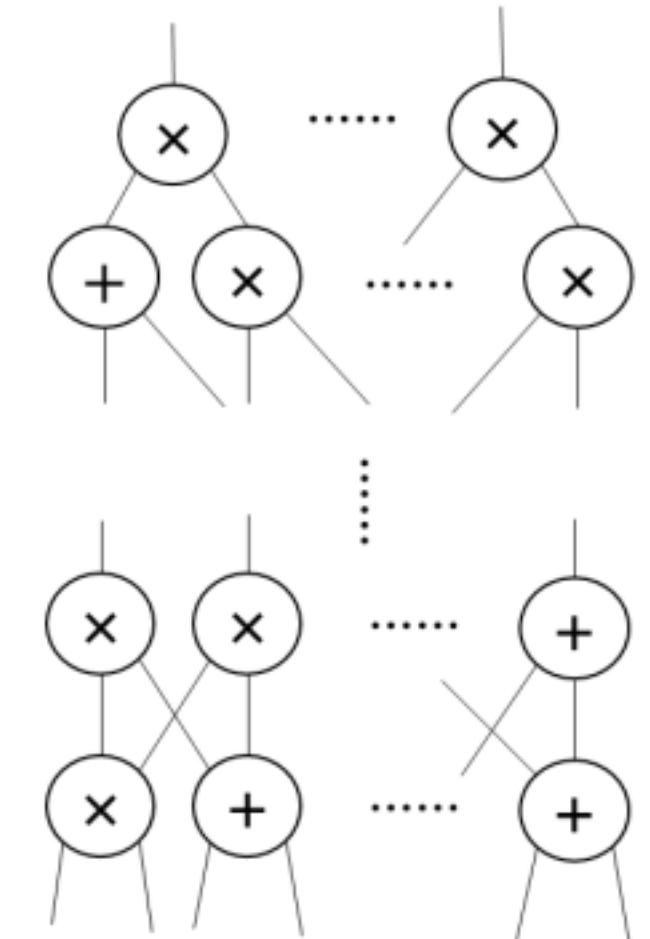


Some program F

Succinct Cryptographic Proofs (SNARKs)

Server (Prover)

Client (Verifier)

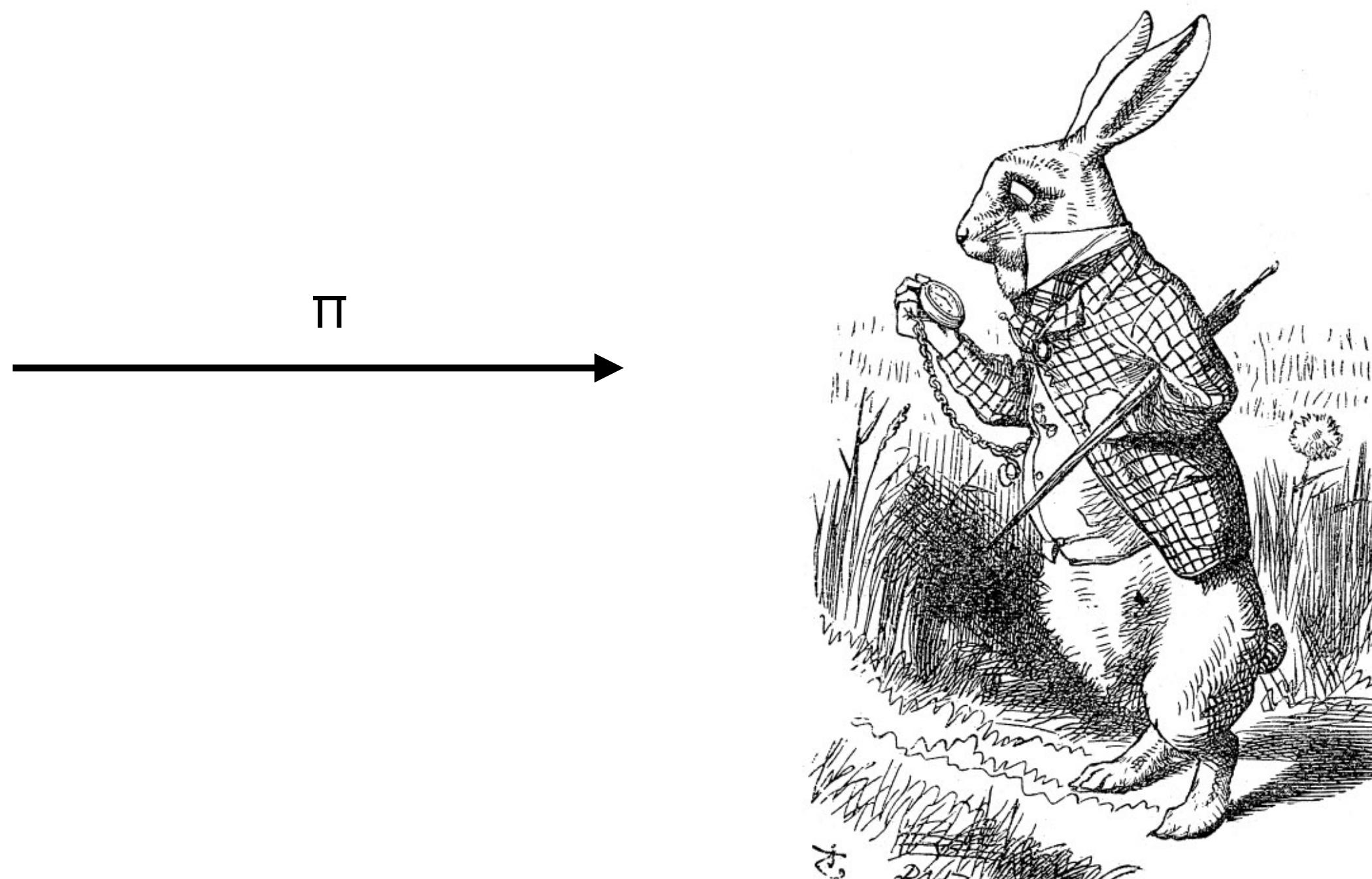


Some program F

Client would like to know
whether $\exists w : F(x, w) = 1$

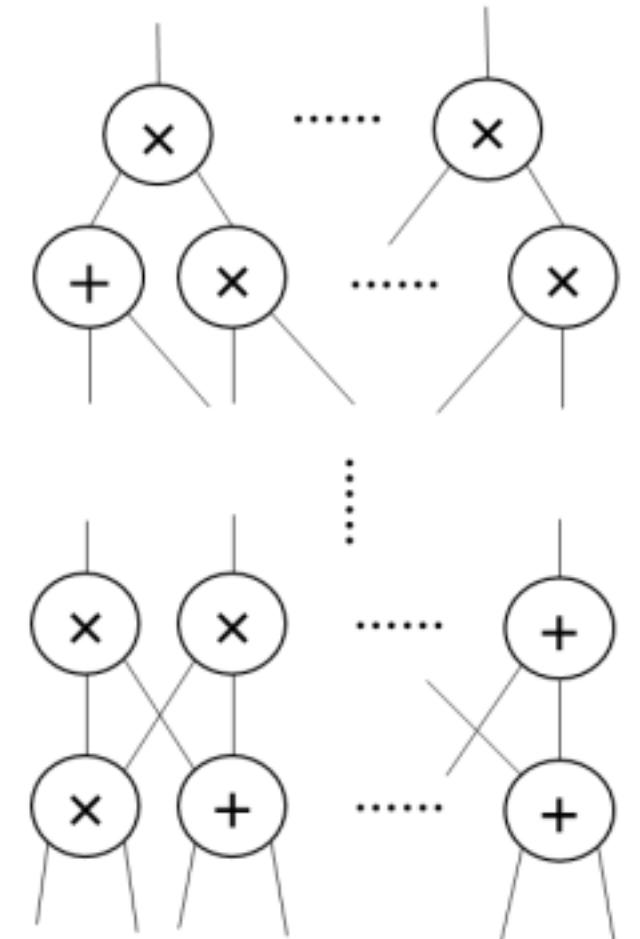
Succinct Cryptographic Proofs (SNARKs)

Server (Prover)



Client (Verifier)

Π

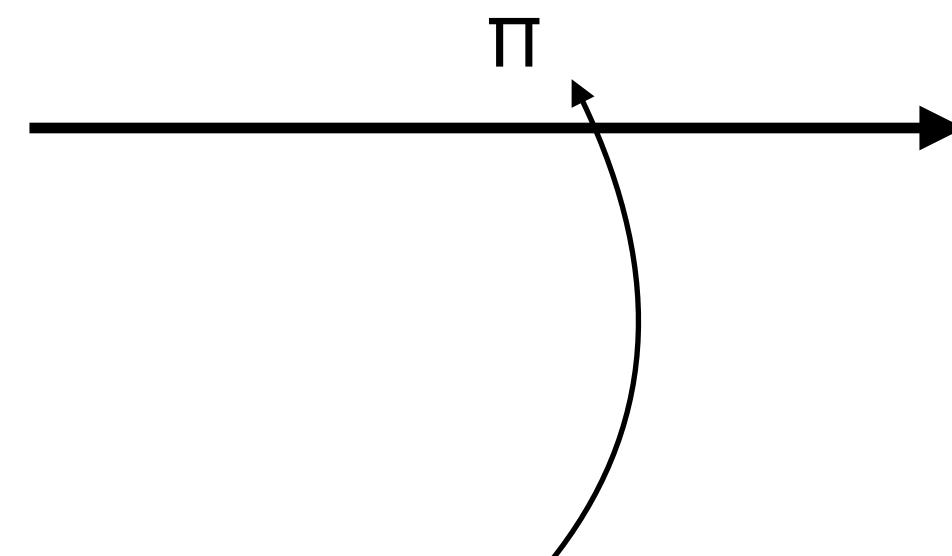


Some program F

Client would like to know
whether $\exists w : F(x, w) = 1$

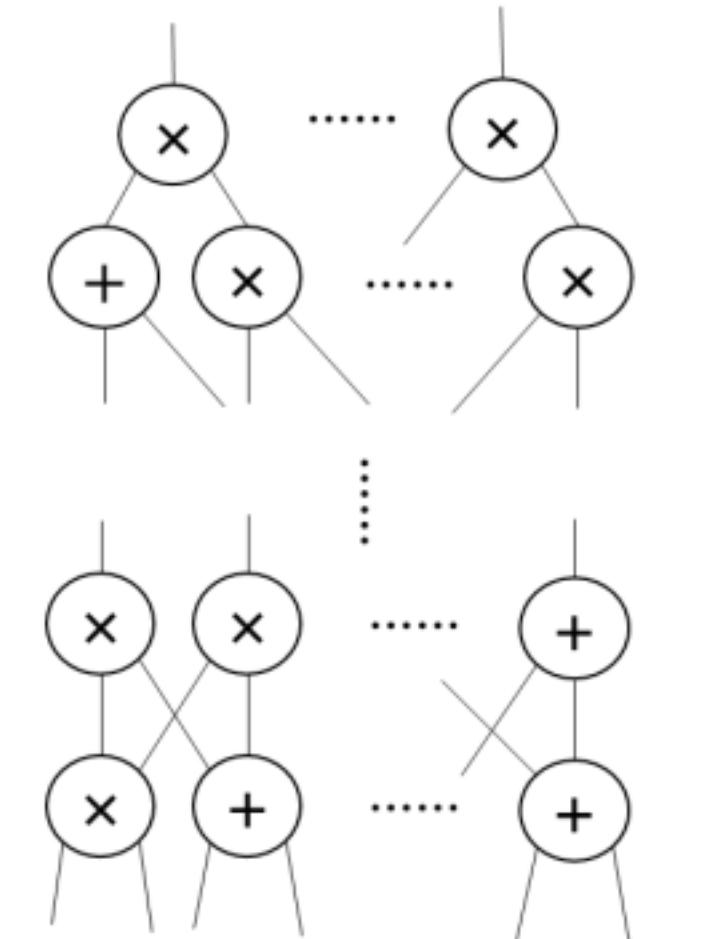
Succinct Cryptographic Proofs (SNARKs)

Server (Prover)



Proof that statement is true

Client (Verifier)

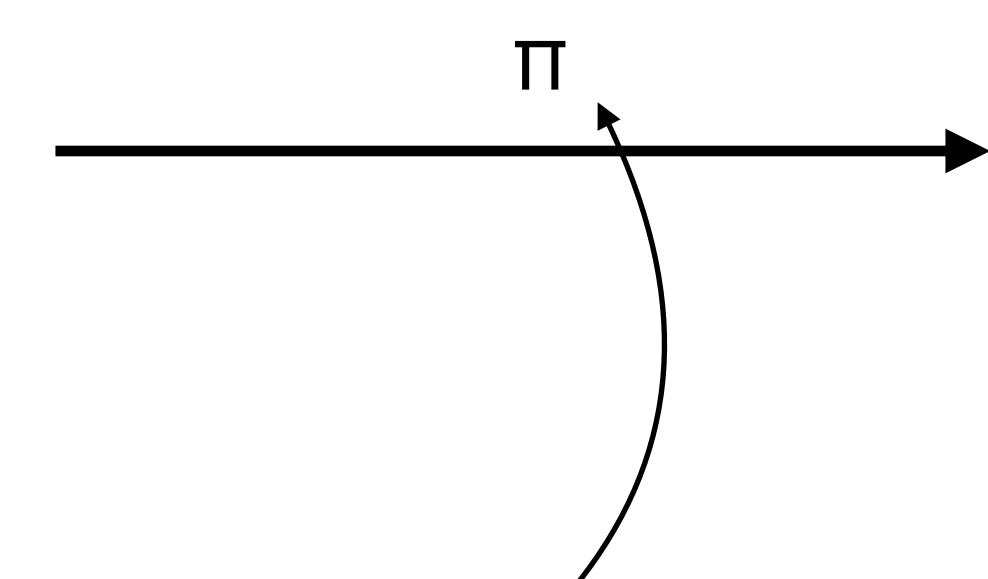


Some program F

Client would like to know
whether $\exists w : F(x, w) = 1$

Succinct Cryptographic Proofs (SNARKs)

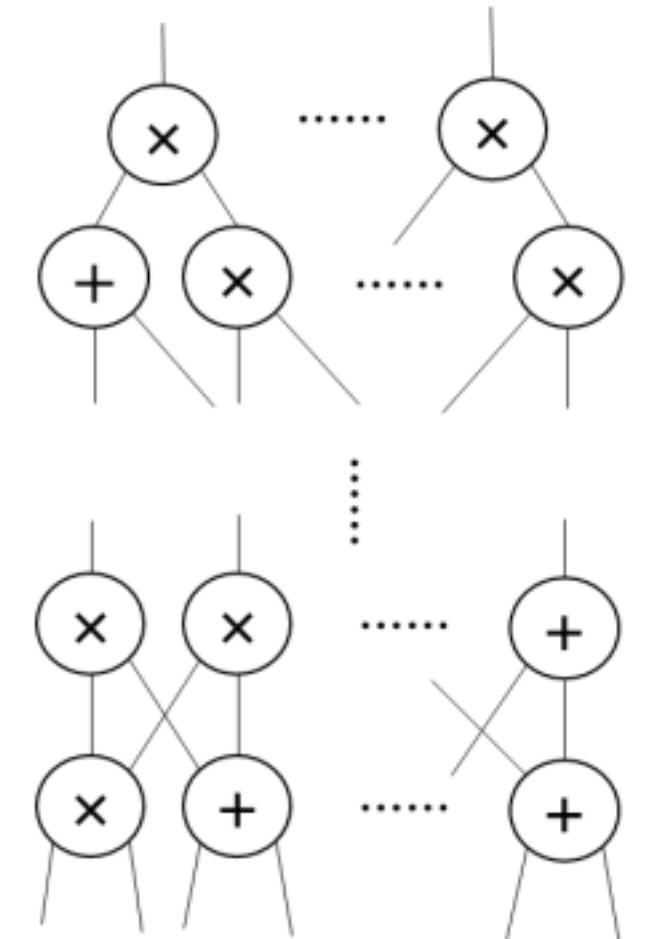
Server (Prover)



Proof that statement is true

Client (Verifier)

Verify(x, π)

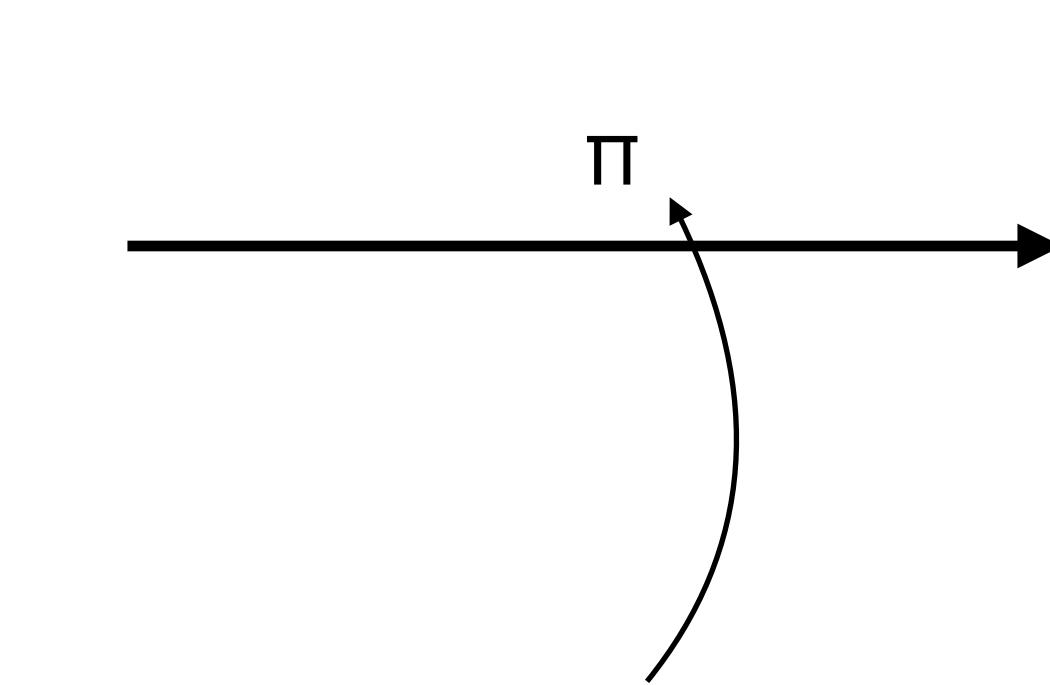


Some program F

Client would like to know
whether $\exists w : F(x, w) = 1$

Succinct Cryptographic Proofs (SNARKs)

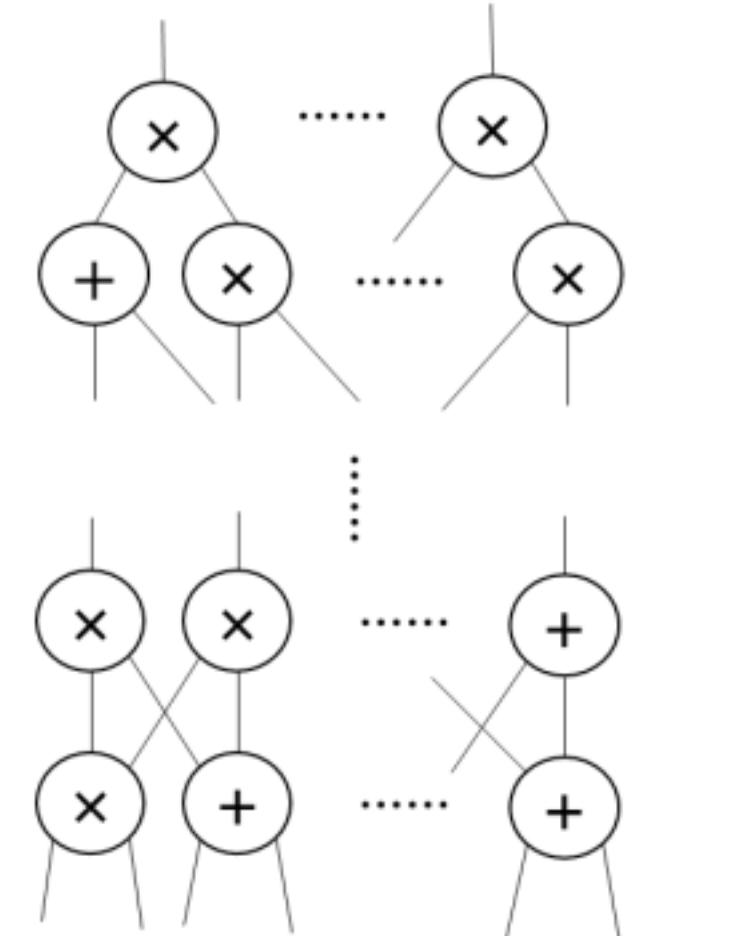
Server (Prover)



Proof that statement is true

Client (Verifier)

Verify(x, π)



Some program F

Common requirement: **Succinctness**
(π is very small; Verify is very fast)

Client would like to know
whether $\exists w : F(x, w) = 1$

Limitations of Traditional “Monolithic” Proofs

Limitations of Traditional “Monolithic” Proofs

- Large memory requirements

Limitations of Traditional “Monolithic” Proofs

- Large memory requirements
 - whole “trace” of the computation should in principle be kept all in memory at the same time

Limitations of Traditional “Monolithic” Proofs

- Large memory requirements
 - whole “trace” of the computation should in principle be kept all in memory at the same time
- No pipelining

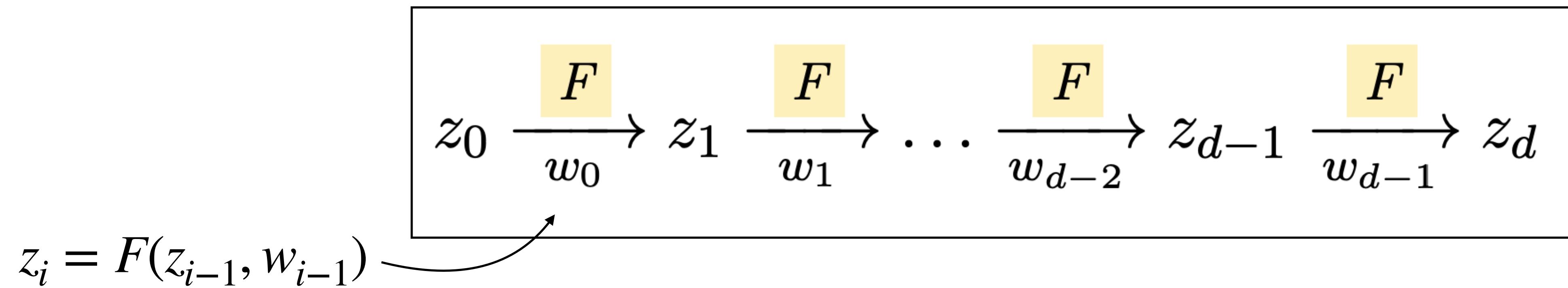
Limitations of Traditional “Monolithic” Proofs

- Large memory requirements
 - whole “trace” of the computation should in principle be kept all in memory at the same time
- No pipelining
 - Must finish the computation before starting proving

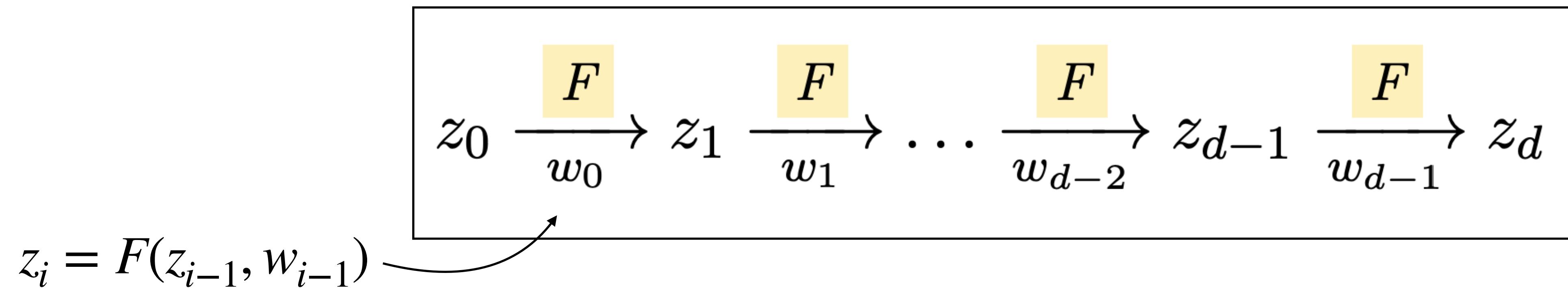
Limitations of Traditional “Monolithic” Proofs

- Large memory requirements
 - whole “trace” of the computation should in principle be kept all in memory at the same time
- No pipelining
 - Must finish the computation before starting proving
 - Cannot take advantage of incremental computations (next slide)

Incremental Computations

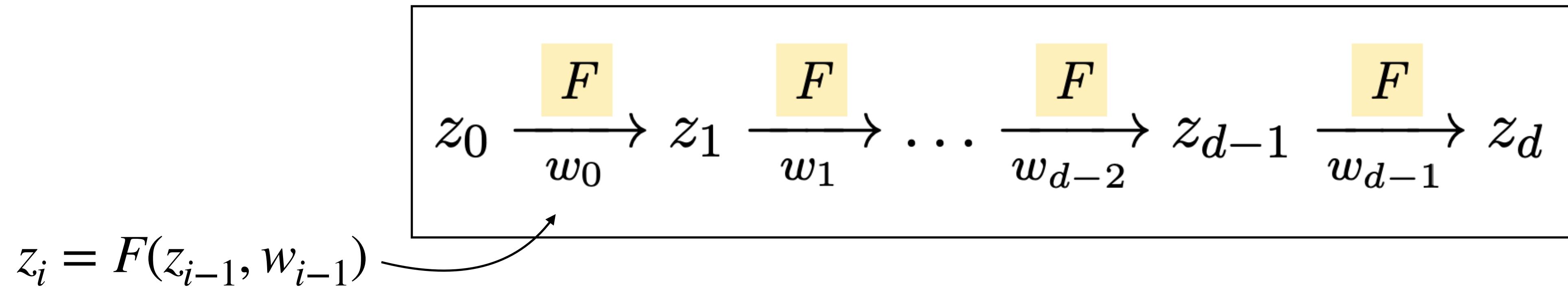


Incremental Computations



Examples of natural applications:

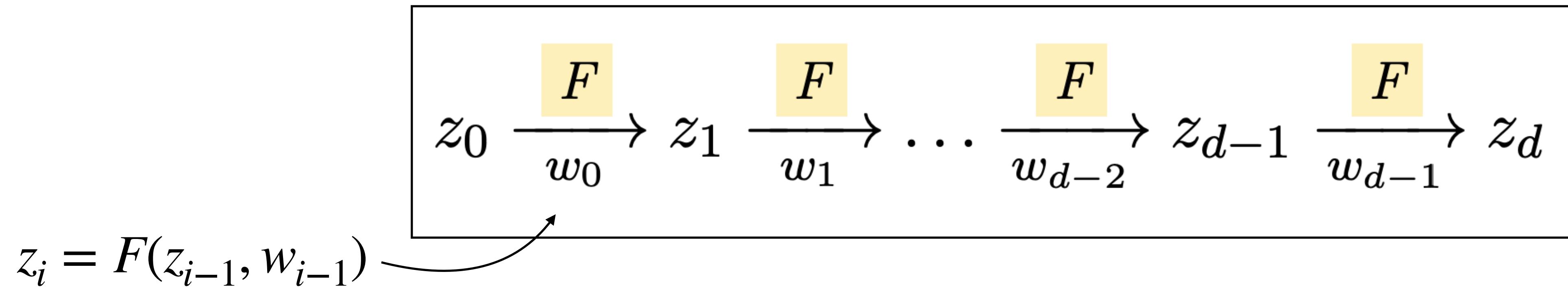
Incremental Computations



Examples of natural applications:

- Streaming algorithms

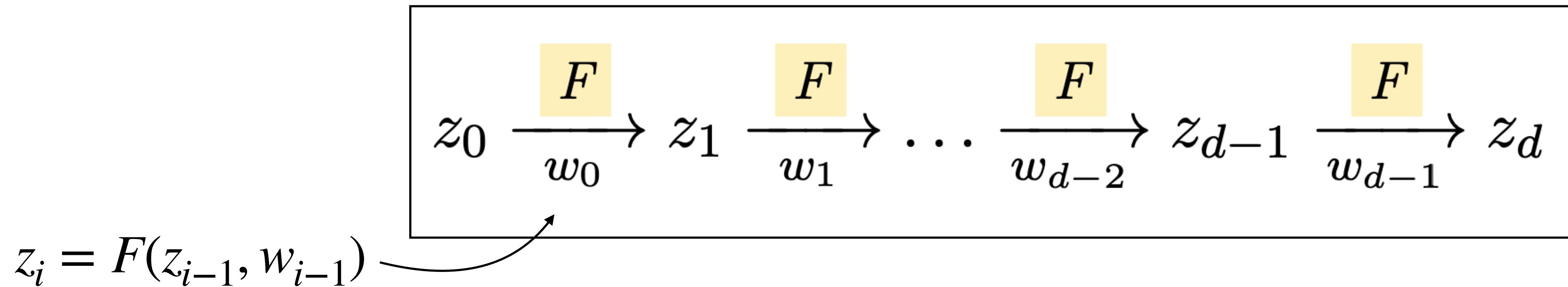
Incremental Computations



Examples of natural applications:

- Streaming algorithms
- RAM computations

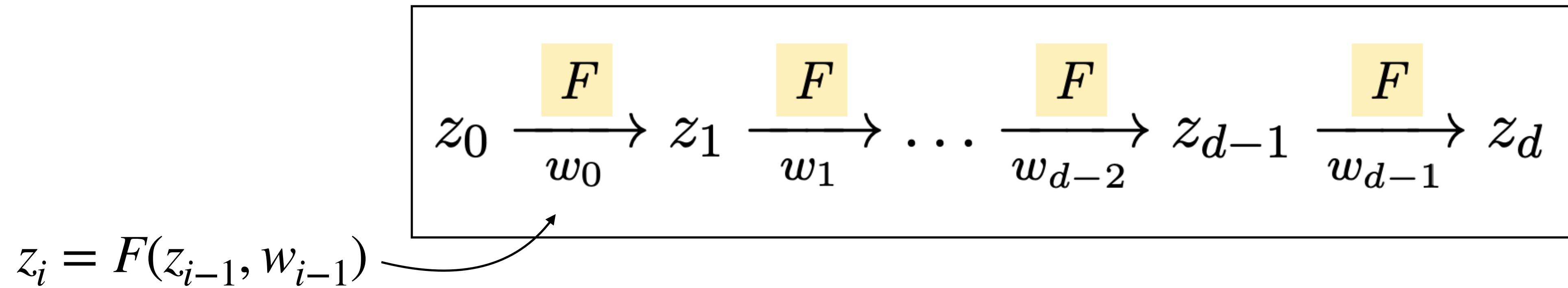
Incremental Computations



Examples of natural applications:

- Streaming algorithms
- RAM computations
- Verifiable Delay Functions (VDF)

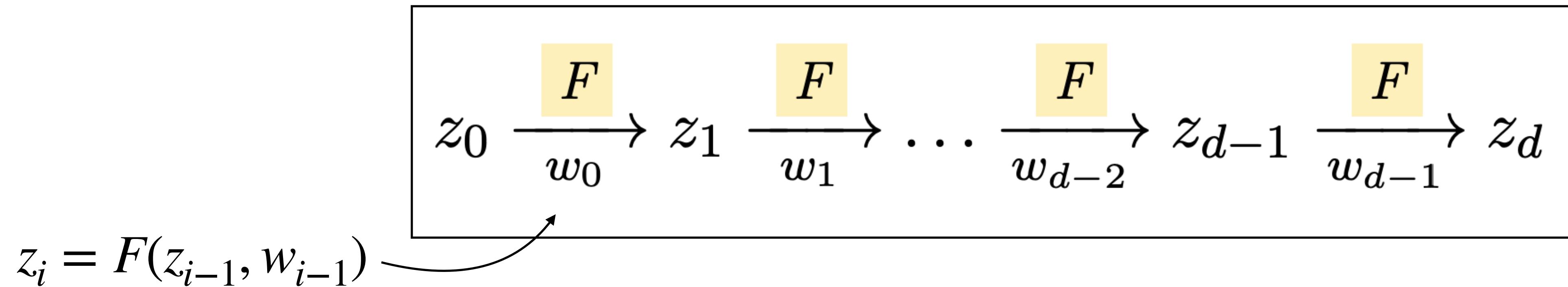
Incremental Computations



Examples of natural applications:

- Streaming algorithms
- RAM computations
- Verifiable Delay Functions (VDF)
- Round functions in symmetric primitives

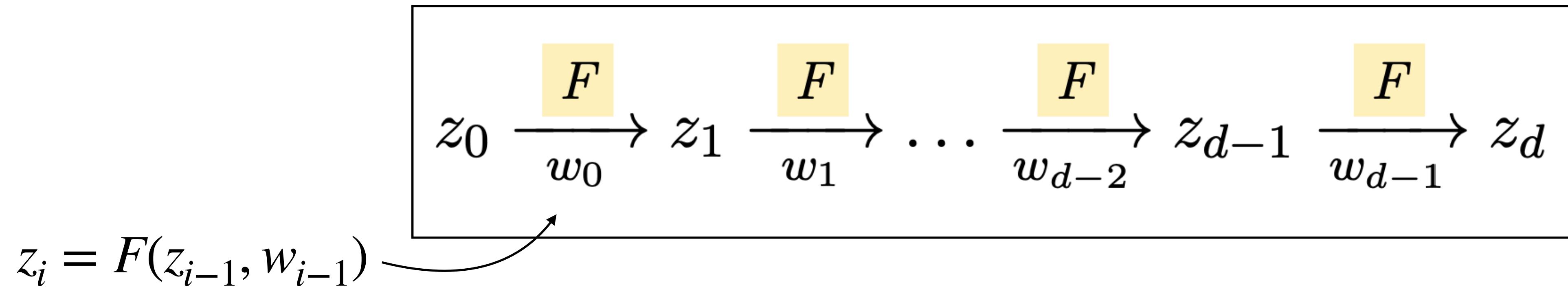
Incremental Computations



Examples of natural applications:

- Streaming algorithms
- RAM computations
- Verifiable Delay Functions (VDF)
- Round functions in symmetric primitives
- Recurrent neural networks

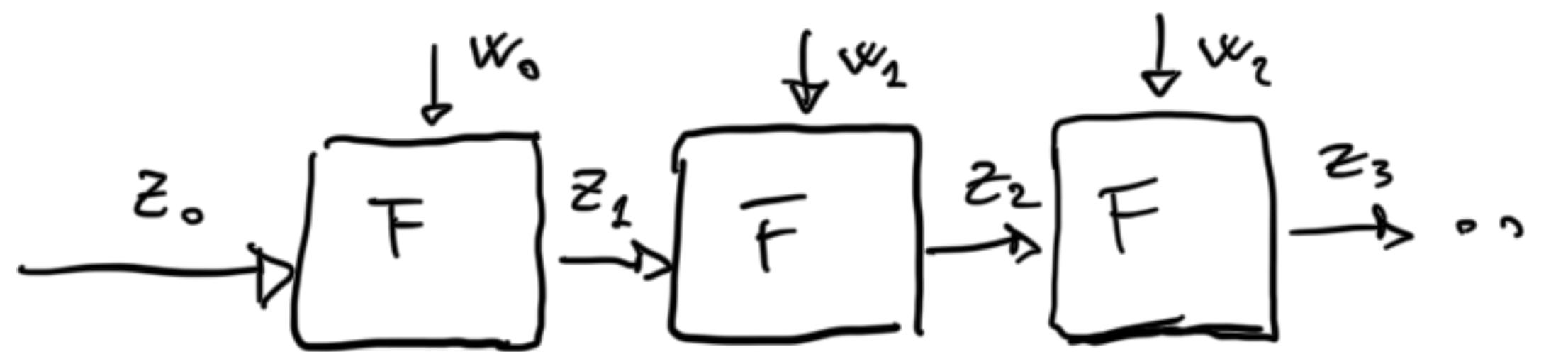
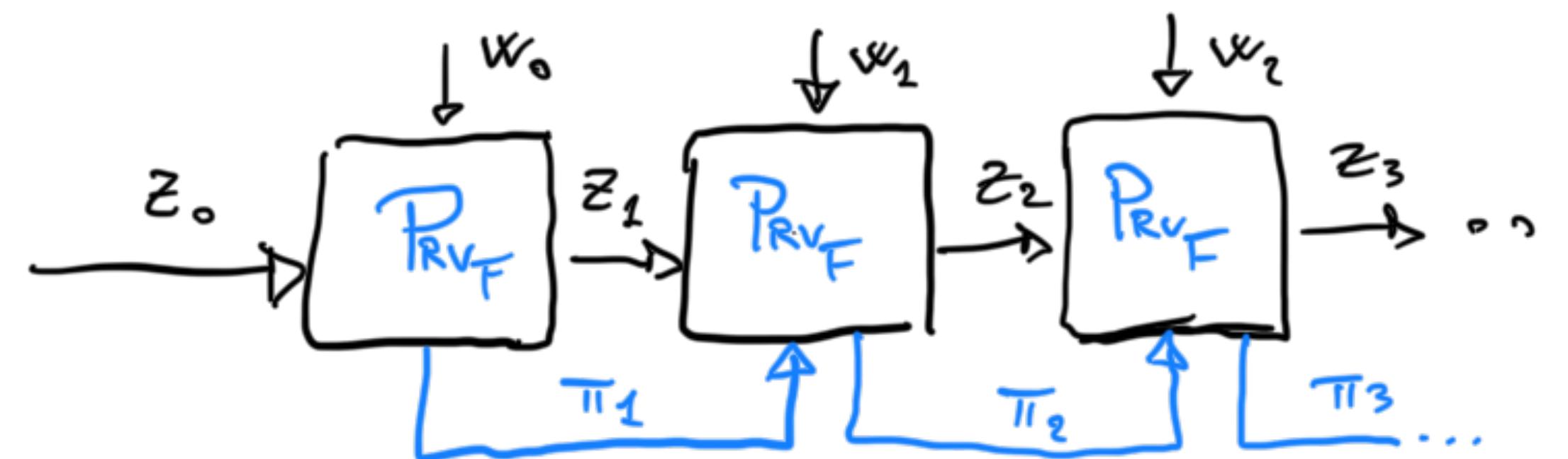
Incremental Computations



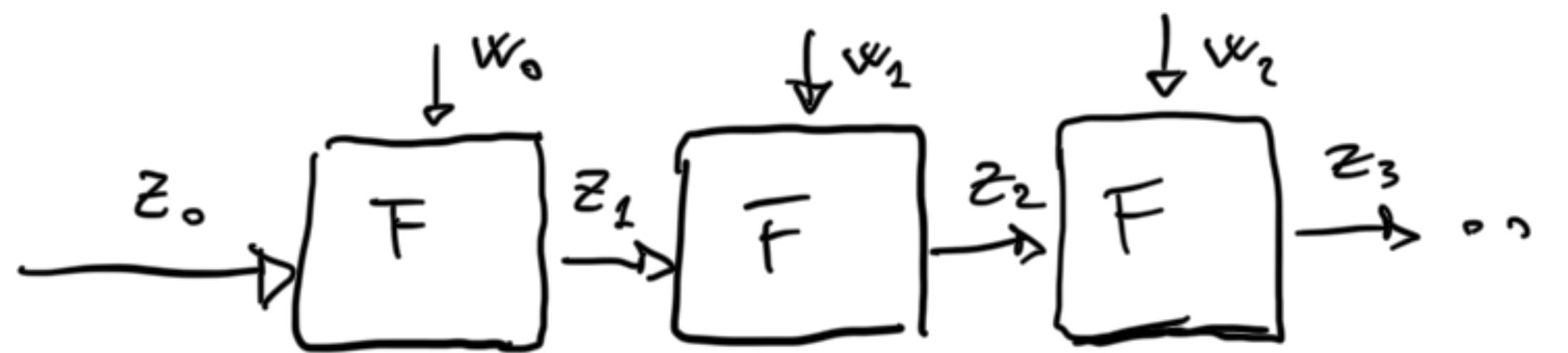
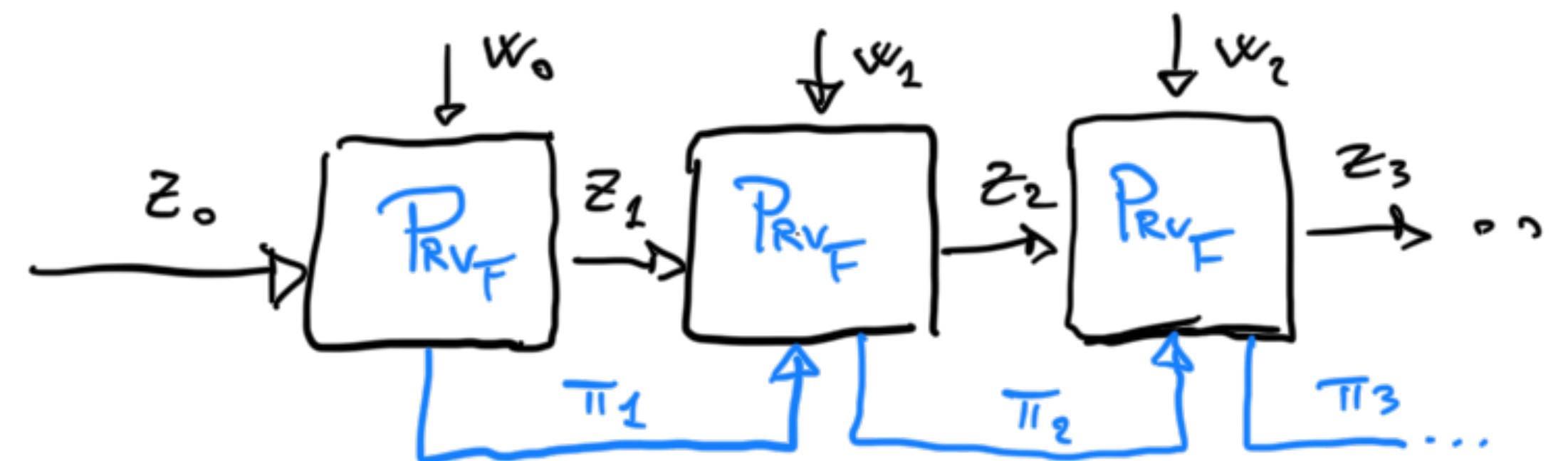
Examples of natural applications:

- Streaming algorithms
- RAM computations
- Verifiable Delay Functions (VDF)
- Round functions in symmetric primitives
- Recurrent neural networks
- ...

Incrementally Verifiable Computations (IVC)

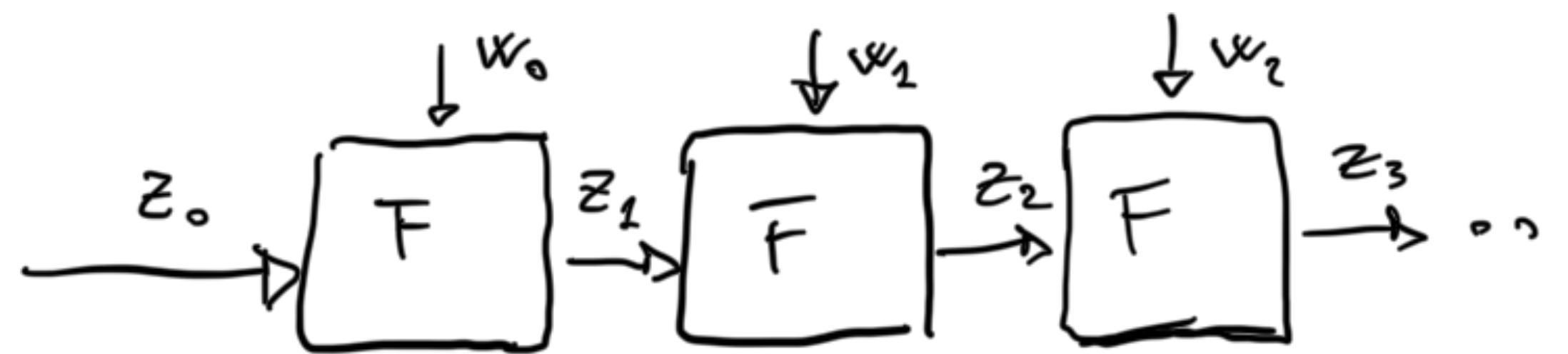


Incrementally Verifiable Computations (IVC)

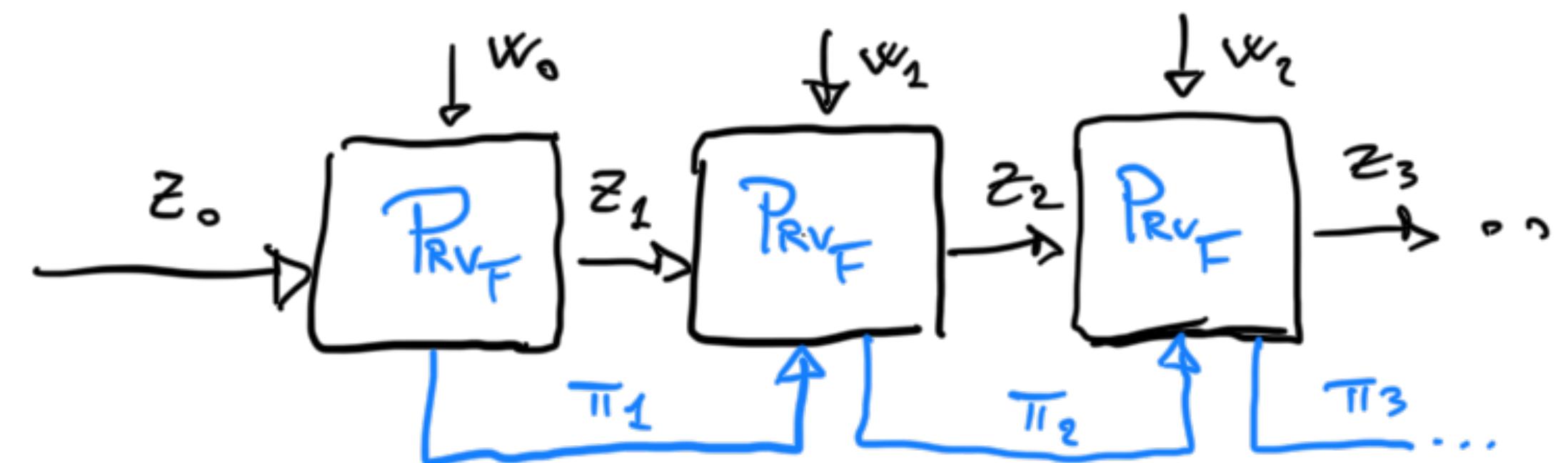


Proof size should be sublinear in the # of steps (the *depth* of the computation)

Incrementally Verifiable Computations (IVC)

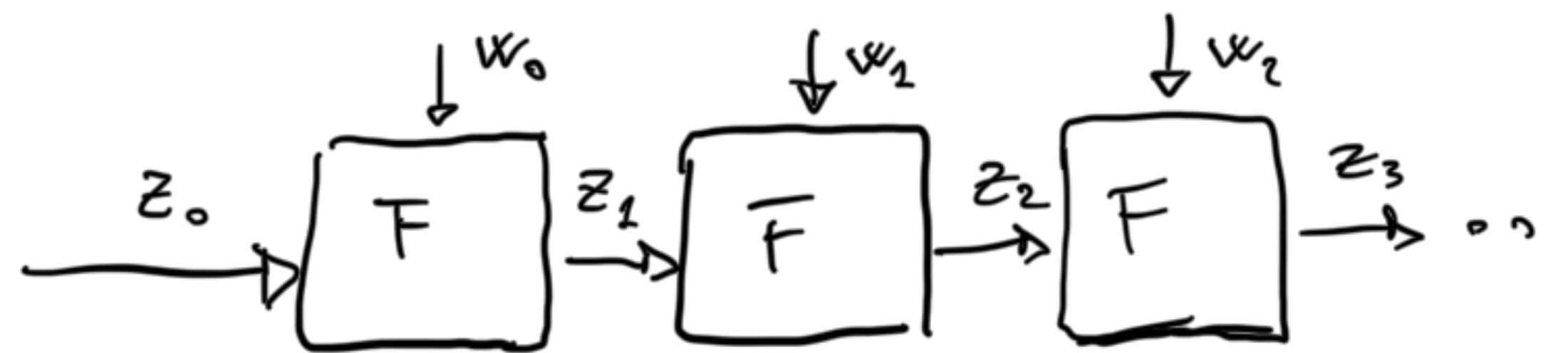


Advantages



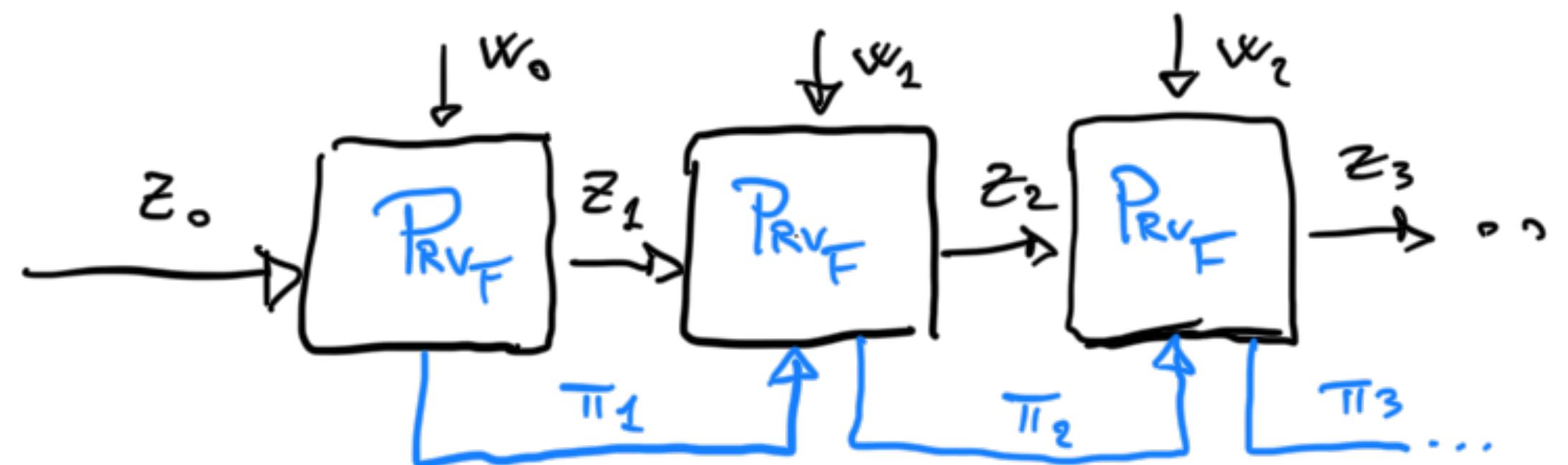
Proof size should be sublinear in the # of steps (the *depth* of the computation)

Incrementally Verifiable Computations (IVC)



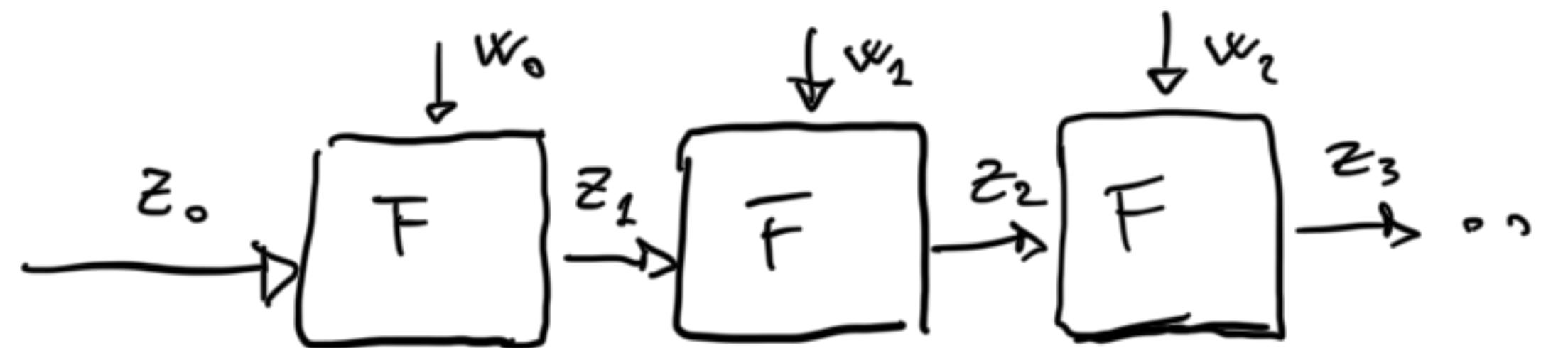
Advantages

- Low memory footprint



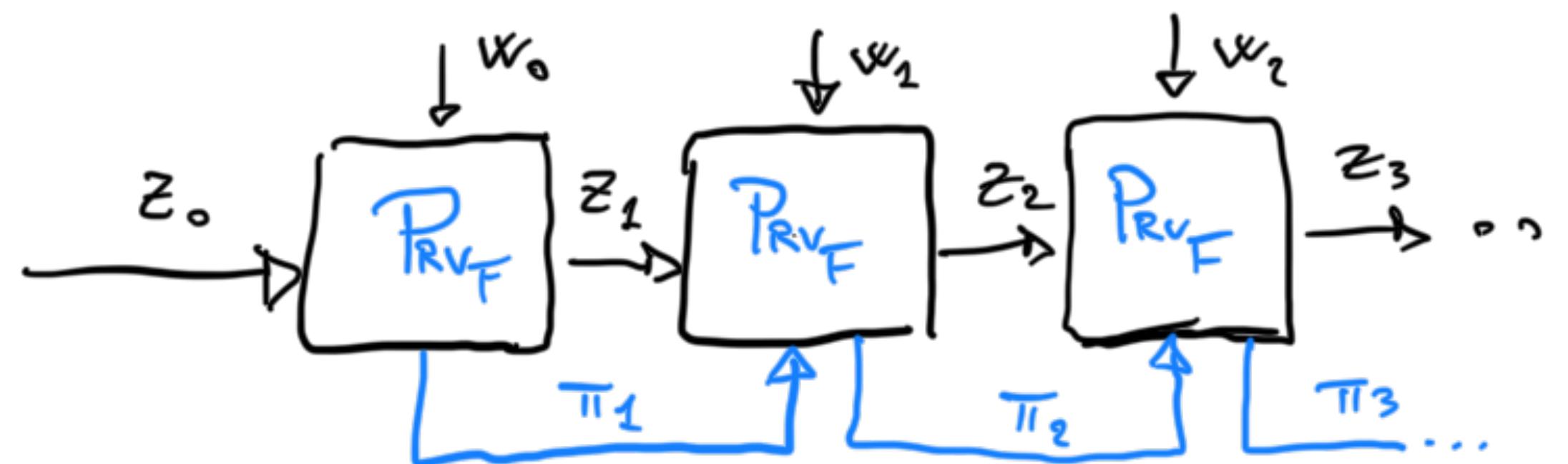
Proof size should be sublinear in the # of steps (the *depth* of the computation)

Incrementally Verifiable Computations (IVC)



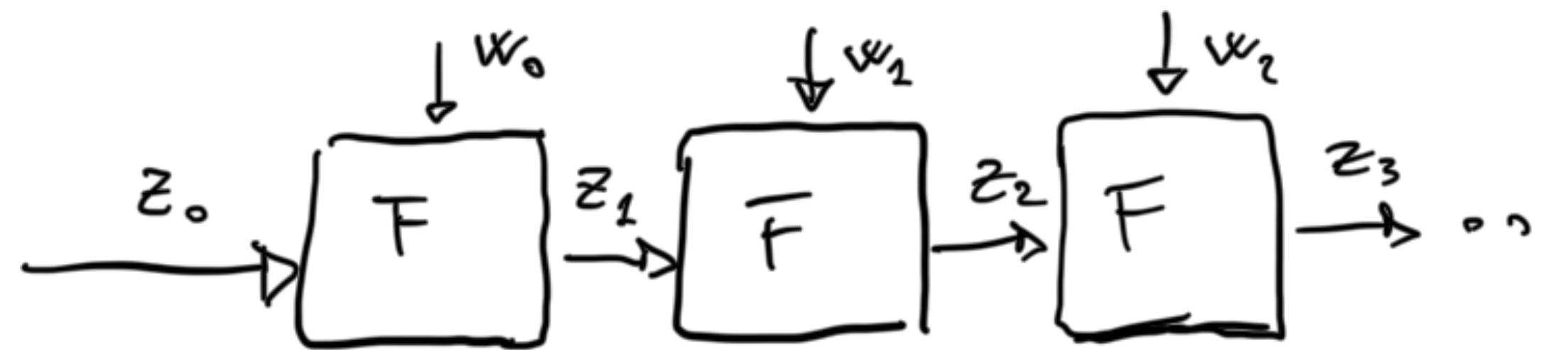
Advantages

- Low memory footprint
- Pipelining opportunities



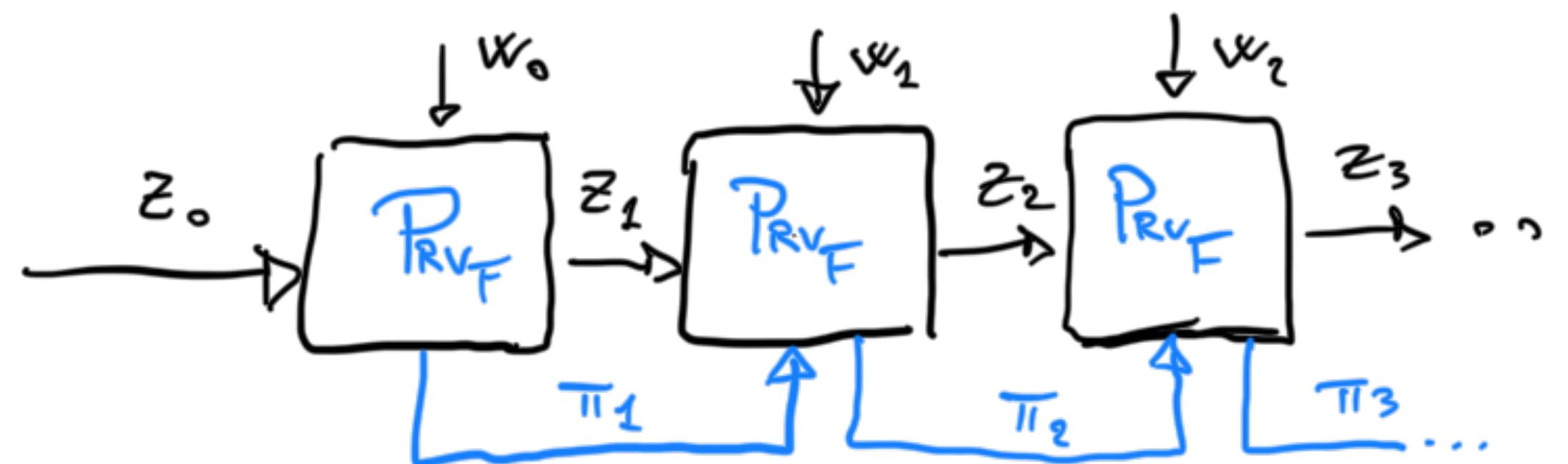
Proof size should be sublinear in the # of steps (the *depth* of the computation)

Incrementally Verifiable Computations (IVC)



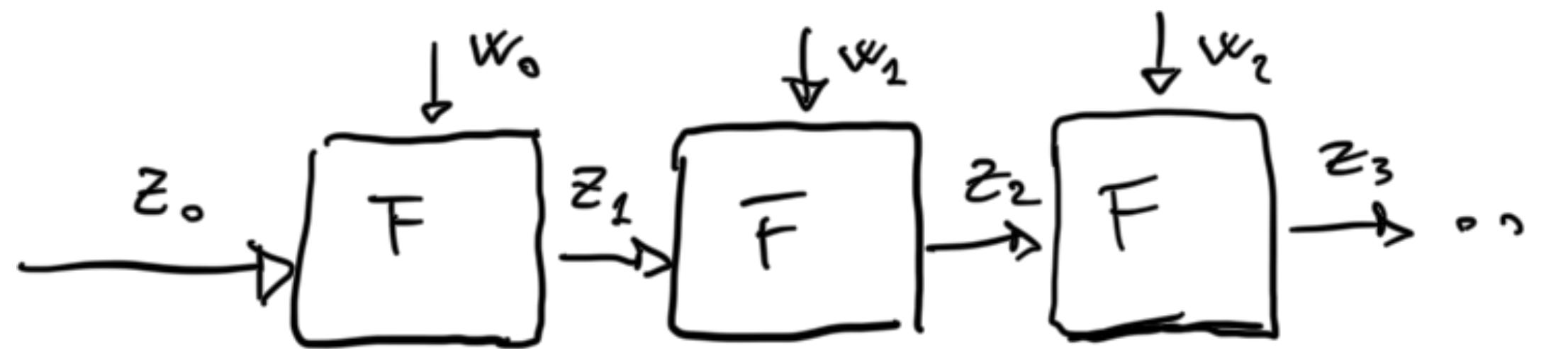
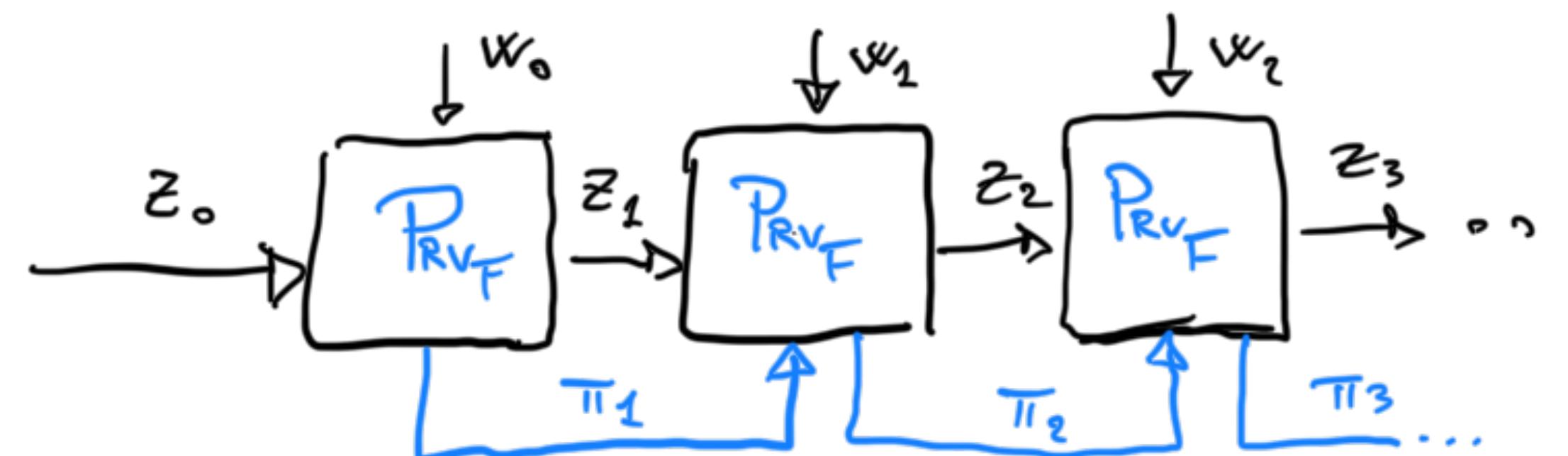
Advantages

- Low memory footprint
- Pipelining opportunities
- Natural model for incremental computations



Proof size should be sublinear in the # of steps (the *depth* of the computation)

Incrementally Verifiable Computations (IVC)



Advantages

- Low memory footprint
- Pipelining opportunities
- Natural model for incremental computations
- Proofs can be distributed (e.g., in settings with zero-knowledge)

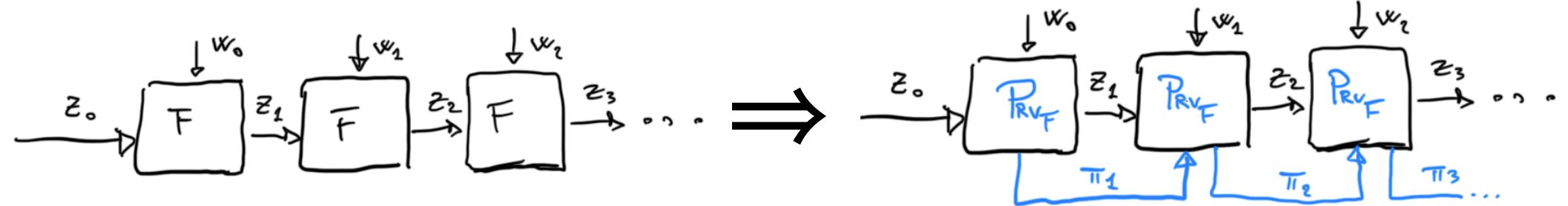
Proof size should be sublinear in the # of steps (the *depth* of the computation)

Constructions of IVC

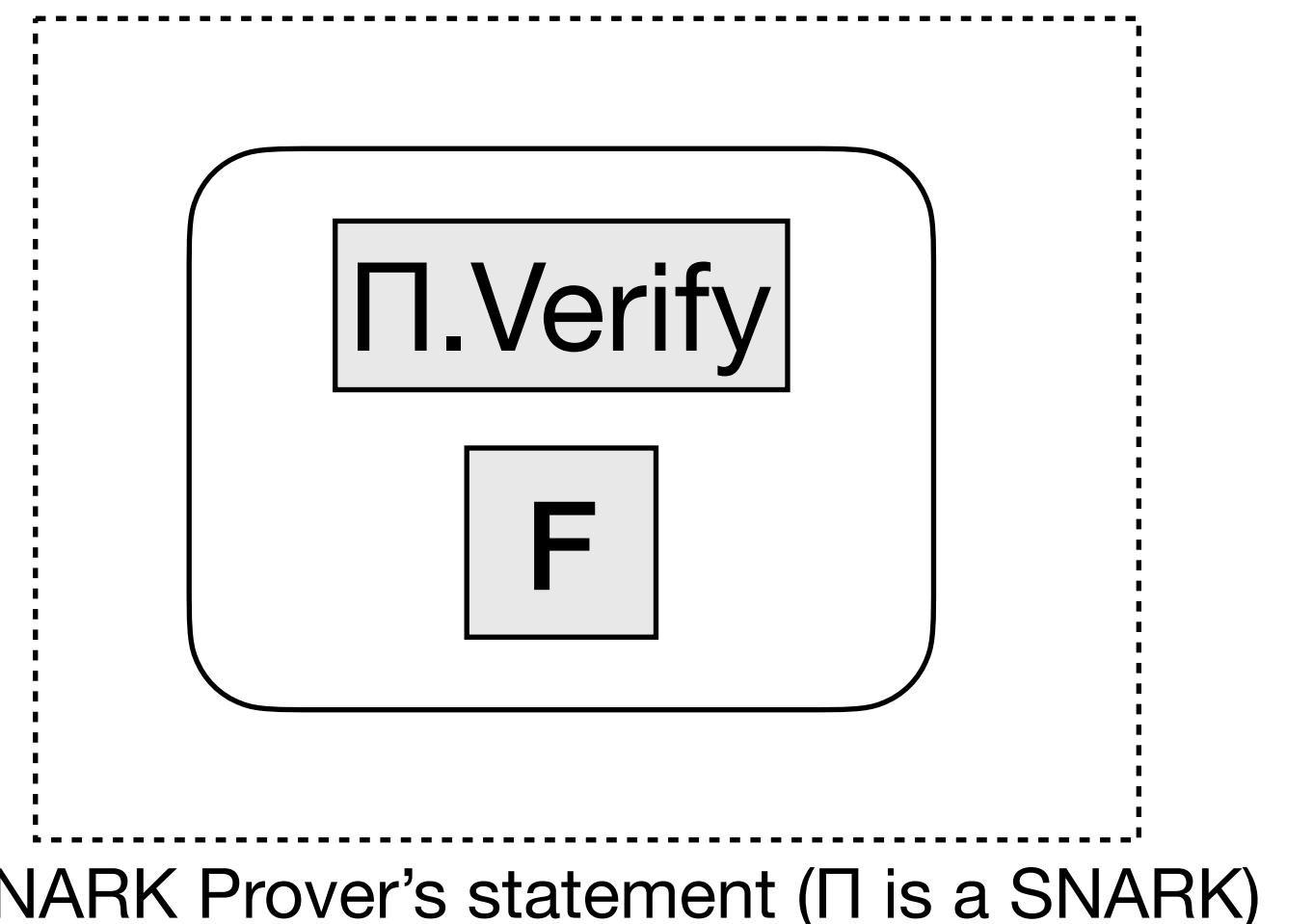
(Practical or nearly-practical)

Constructions of IVC

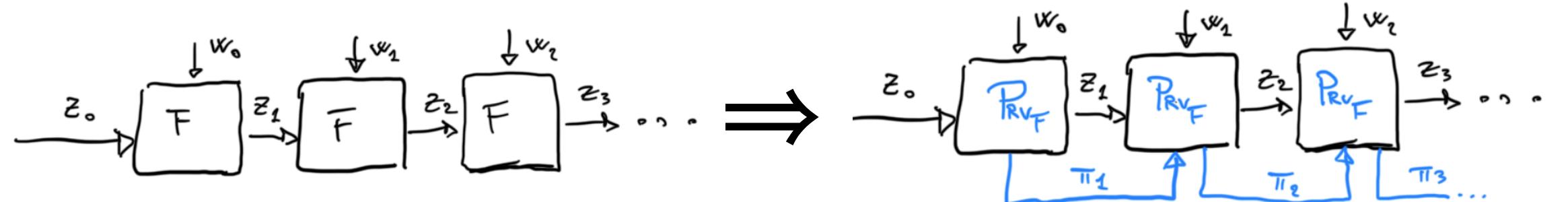
(Practical or nearly-practical)



Constructions of IVC (Practical or nearly-practical)



**Canonical construction
(SNARK recursion)**

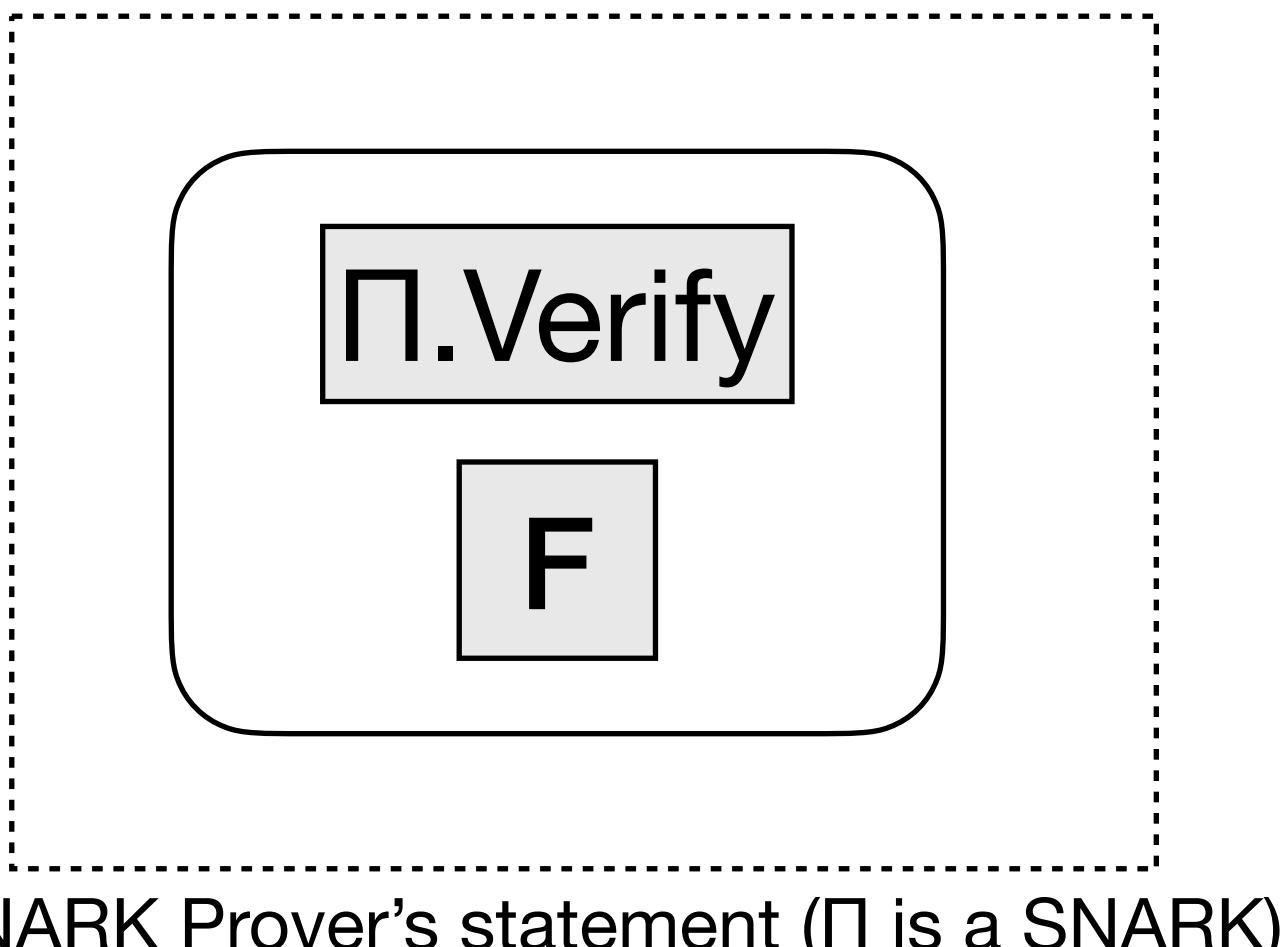


Constructions of IVC (Practical or nearly-practical)

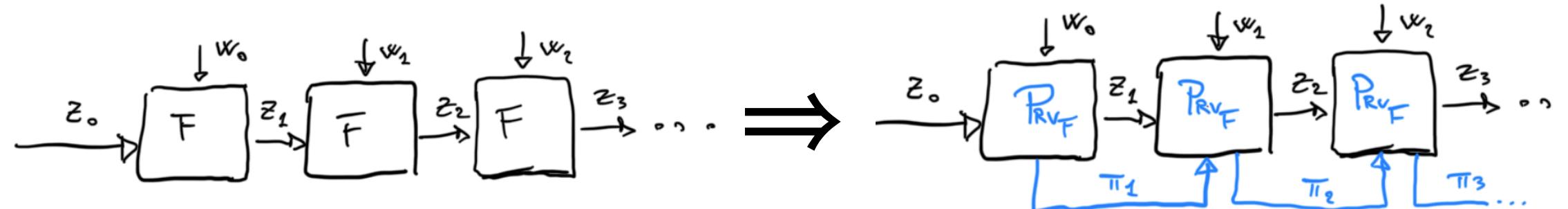
Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes

Abhiram Kothapalli[†] Srinath Setty^{*} Ioanna Tzialla[‡]

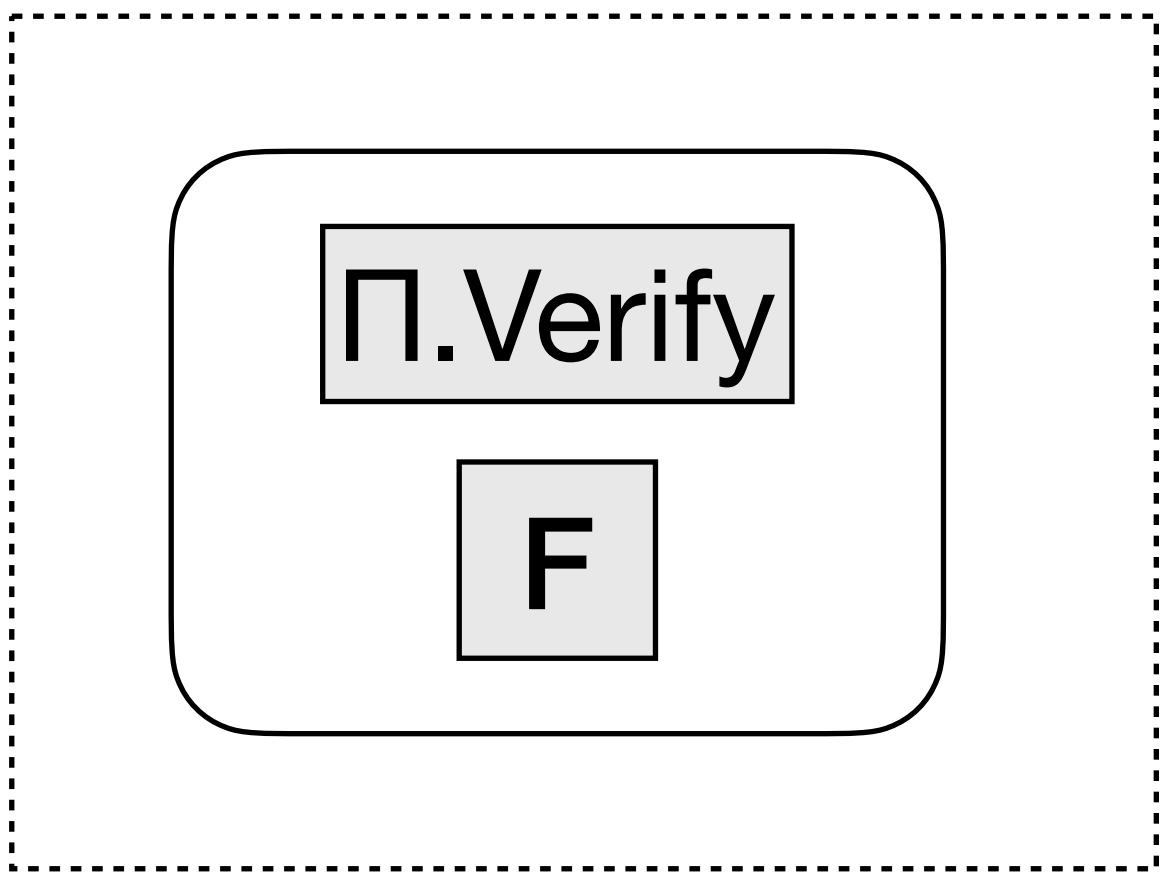
[†]Carnegie Mellon University ^{*}Microsoft Research [‡]New York University



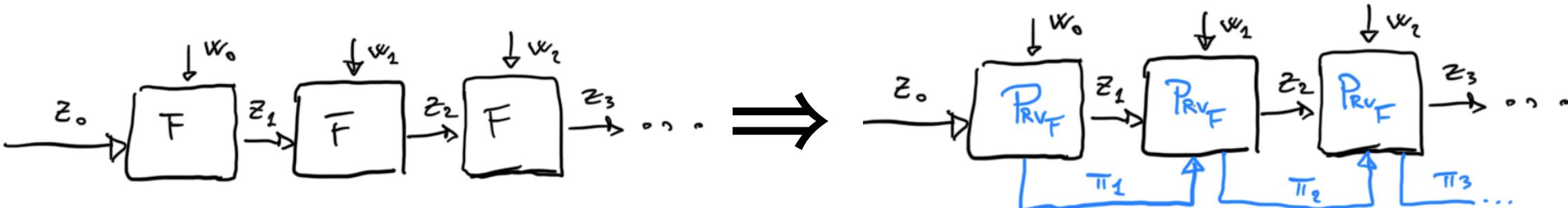
**Canonical construction
(SNARK recursion)**



Constructions of IVC (Practical or nearly-practical)



Canonical construction (SNARK recursion)



Nova: Recursive Zero-Knowledge Arguments from Folding Schemes

Abhiram Kothapalli[†] Srinath Setty^{*} Ioanna Tzialla[‡]

[†]Carnegie Mellon University ^{*}Microsoft Research [‡]New York University

Proof-Carrying Data without Succinct Arguments

Benedikt Bünz
benedikt@cs.stanford.edu
Stanford University

Alessandro Chiesa
alexch@berkeley.edu
UC Berkeley

William Lin
will.lin@berkeley.edu
UC Berkeley

Pratyush Mishra
pratyush@berkeley.edu
UC Berkeley

Nicholas Spooner
nspoone@bu.edu
Boston University

Constructions of IVC (Practical or nearly-practical)

Nova: Recursive Zero-Knowledge Arguments from Folding Schemes

Abhiram Kothapalli[†]

[†]Carnegie Mellon University

Srinath Setty^{*}

^{*}Microsoft Research

Ioanna Tzialla[‡]

[‡]New York University

Proof-Carrying Data without Succinct Arguments

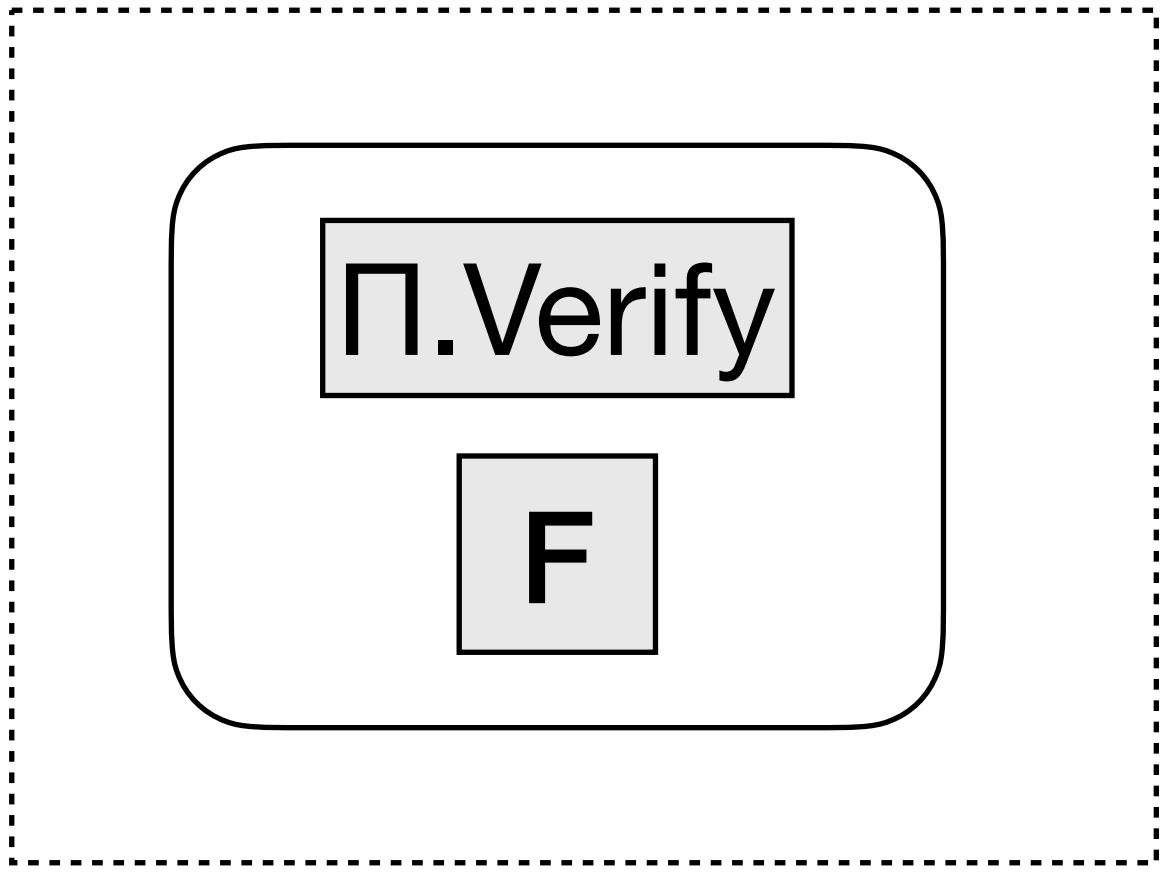
Benedikt Bünz
benedikt@cs.stanford.edu
Stanford University

Alessandro Chiesa
alexch@berkeley.edu
UC Berkeley

William Lin
will.lin@berkeley.edu
UC Berkeley

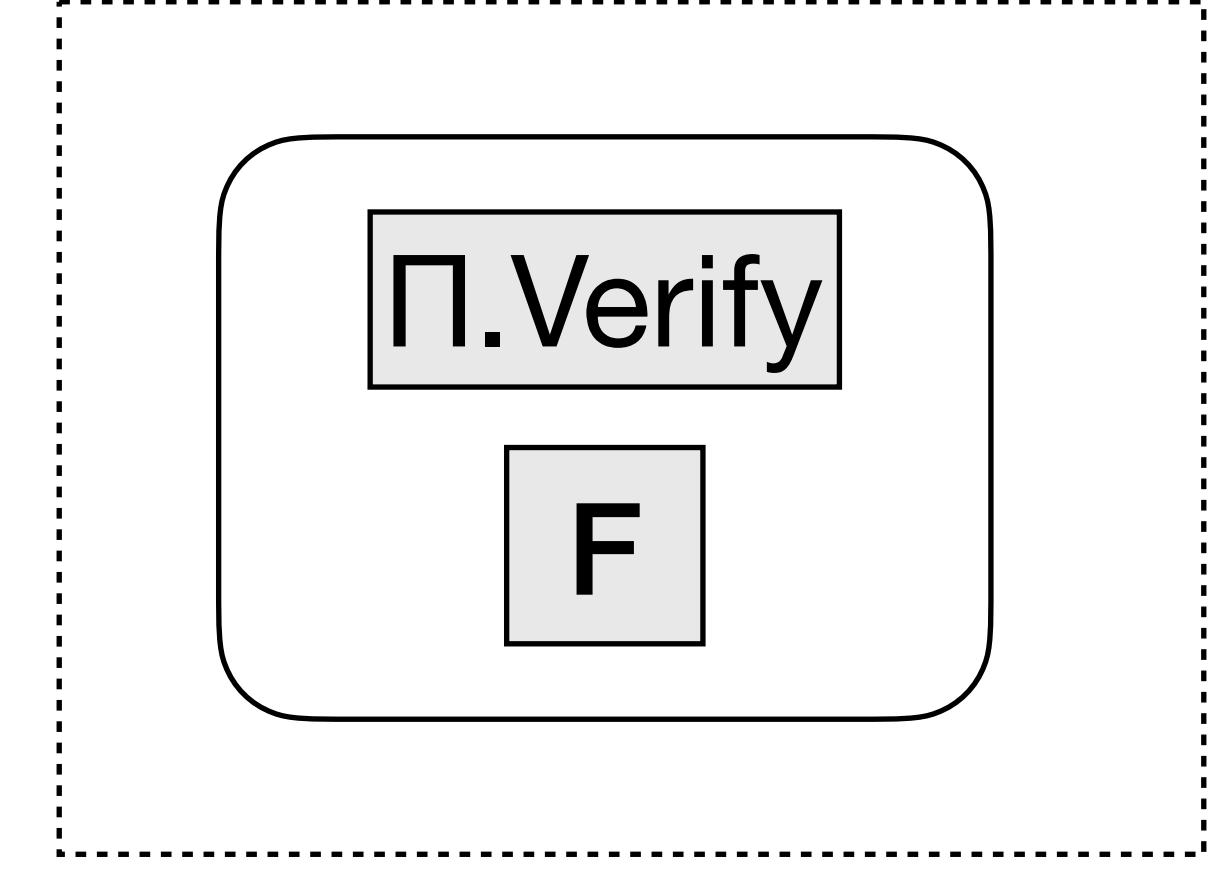
Pratyush Mishra
pratyush@berkeley.edu
UC Berkeley

Nicholas Spooner
nspoone@bu.edu
Boston University



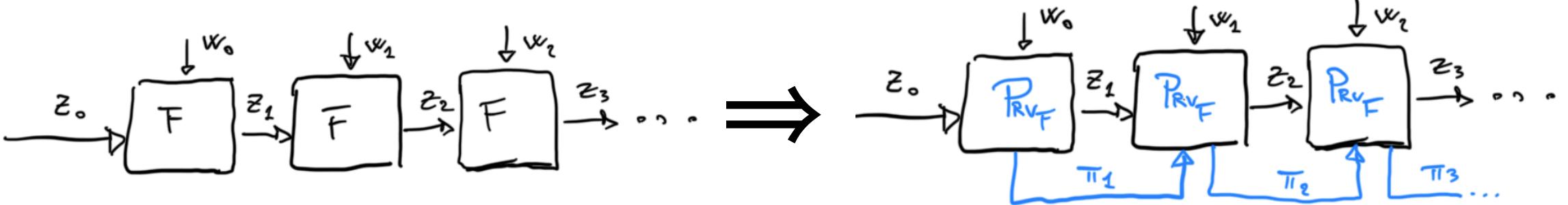
SNARK Prover's statement (Π is a SNARK)

**Canonical construction
(SNARK recursion)**



Folding/acc. Prover's statement (Π is a folding/acc. scheme)

**Lightweight version
(folding/accumulation recursion)**



* very approximate rendition (there are more details)

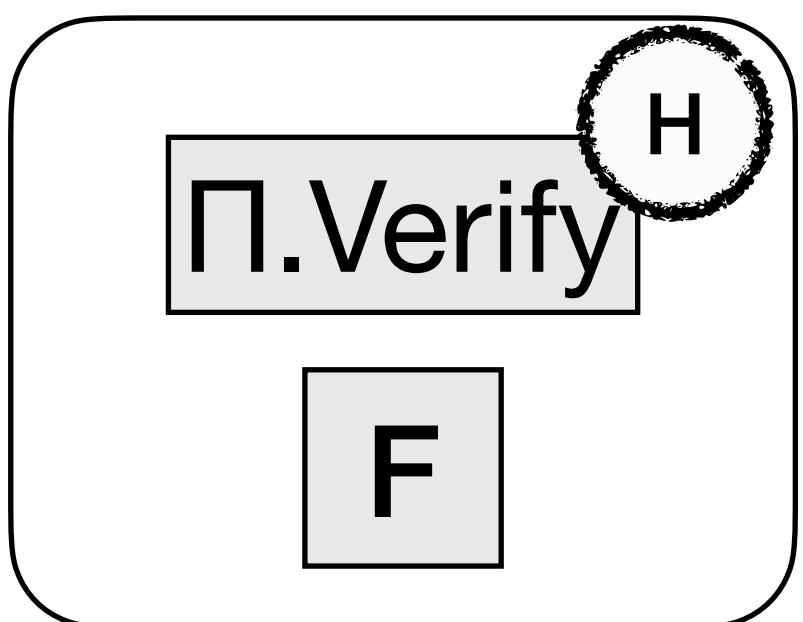
Challenges in Proving the Security of IVC

Challenges in Proving the Security of IVC

- **First challenge:** idealized models and “theoretical hygiene”

Challenges in Proving the Security of IVC

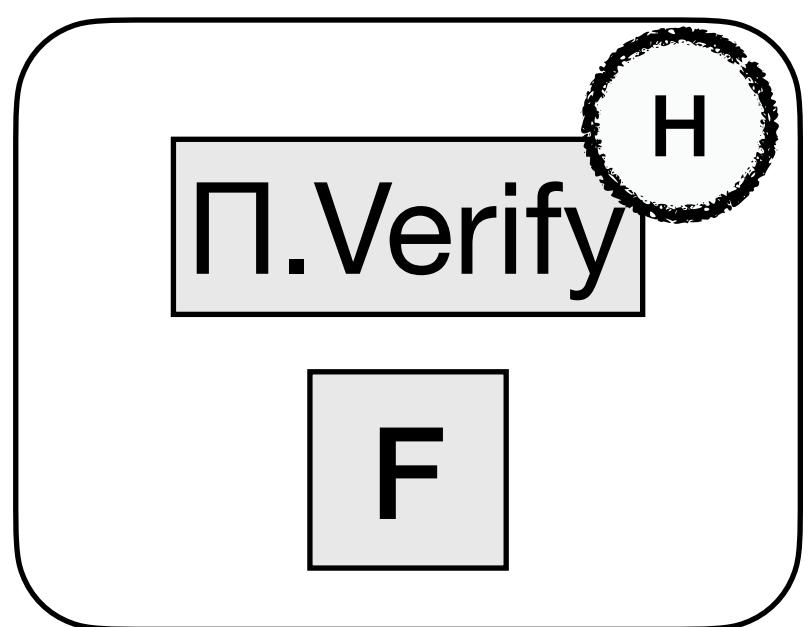
- **First challenge:** idealized models and “theoretical hygiene”



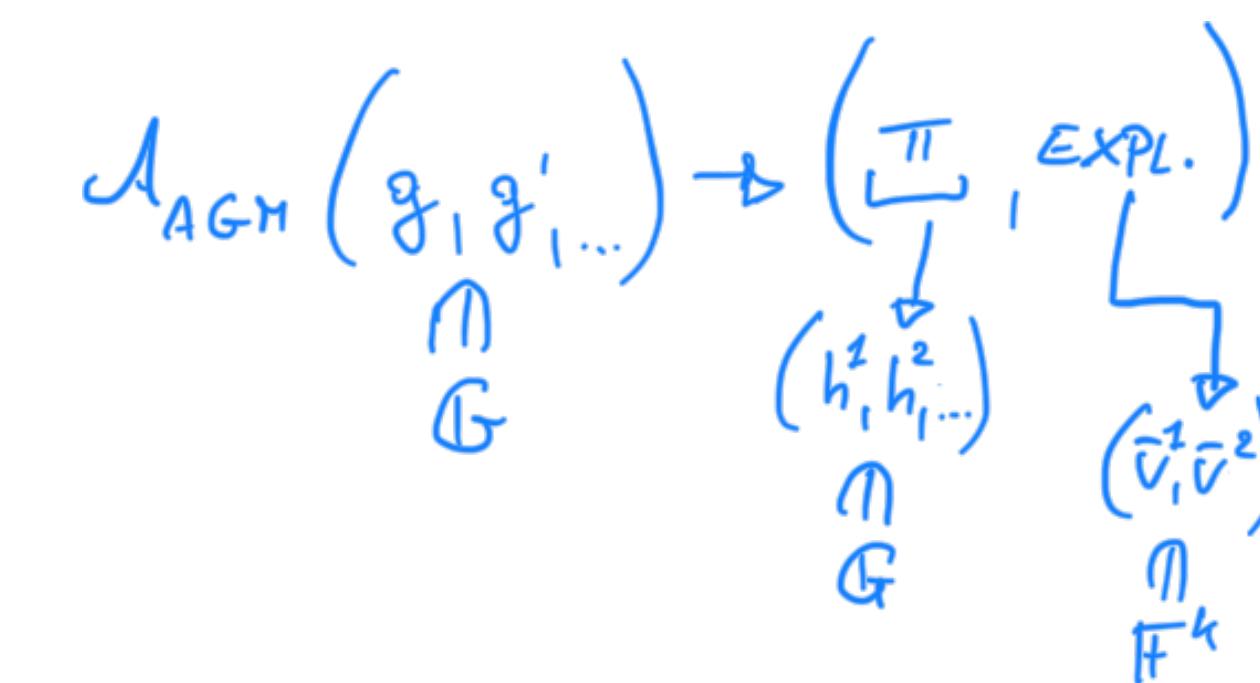
Random Oracle

Challenges in Proving the Security of IVC

- **First challenge:** idealized models and “theoretical hygiene”



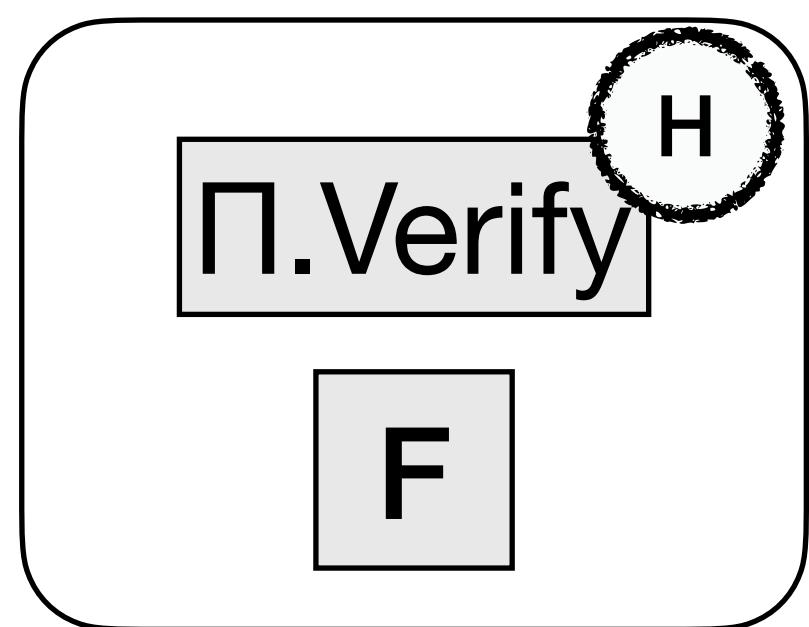
Random Oracle



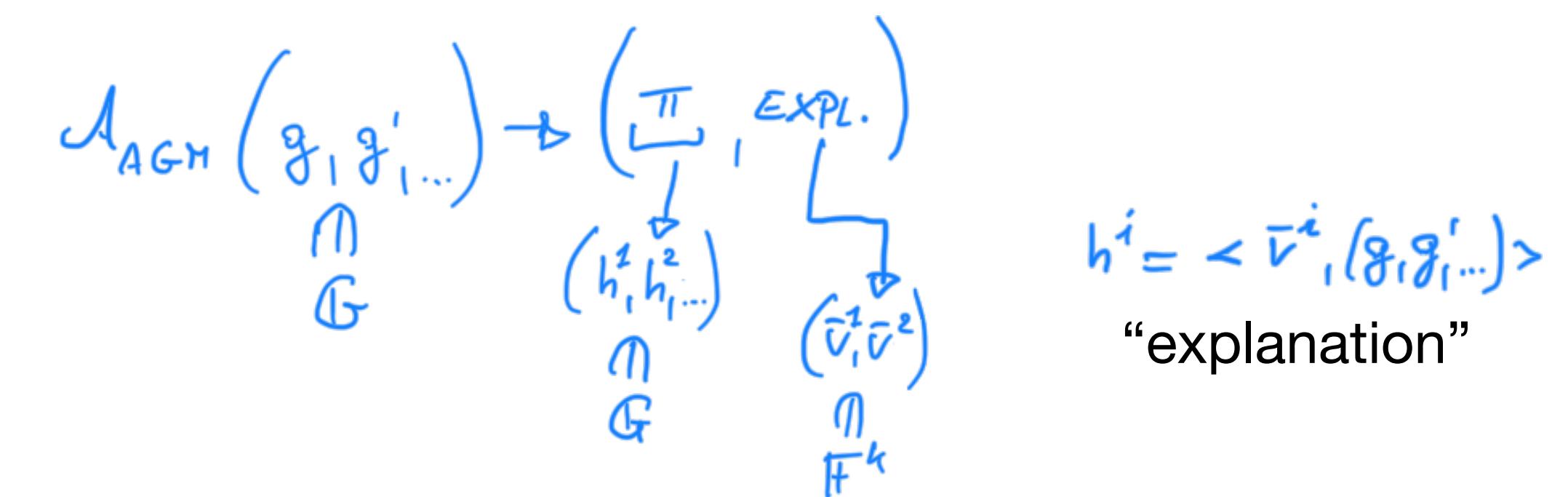
Algebraic Group Model (AGM)

Challenges in Proving the Security of IVC

- **First challenge:** idealized models and “theoretical hygiene”



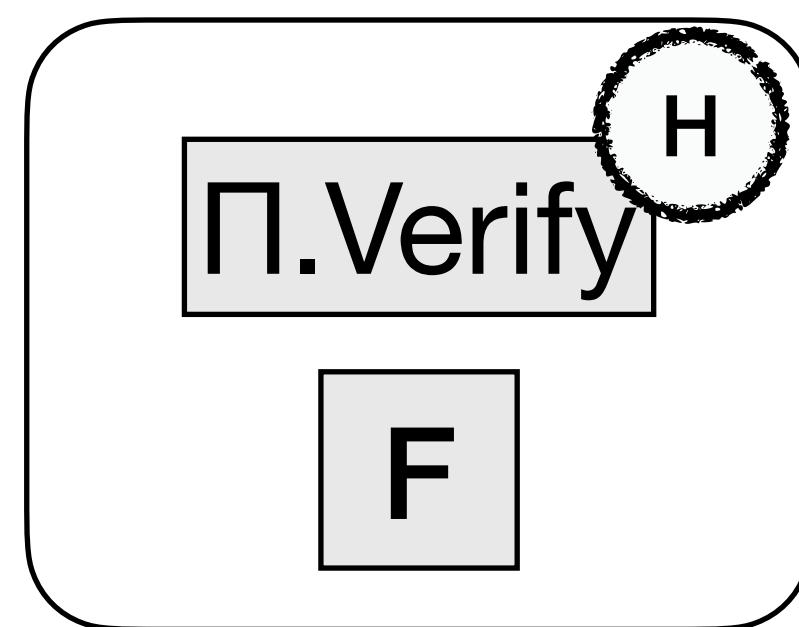
Random Oracle



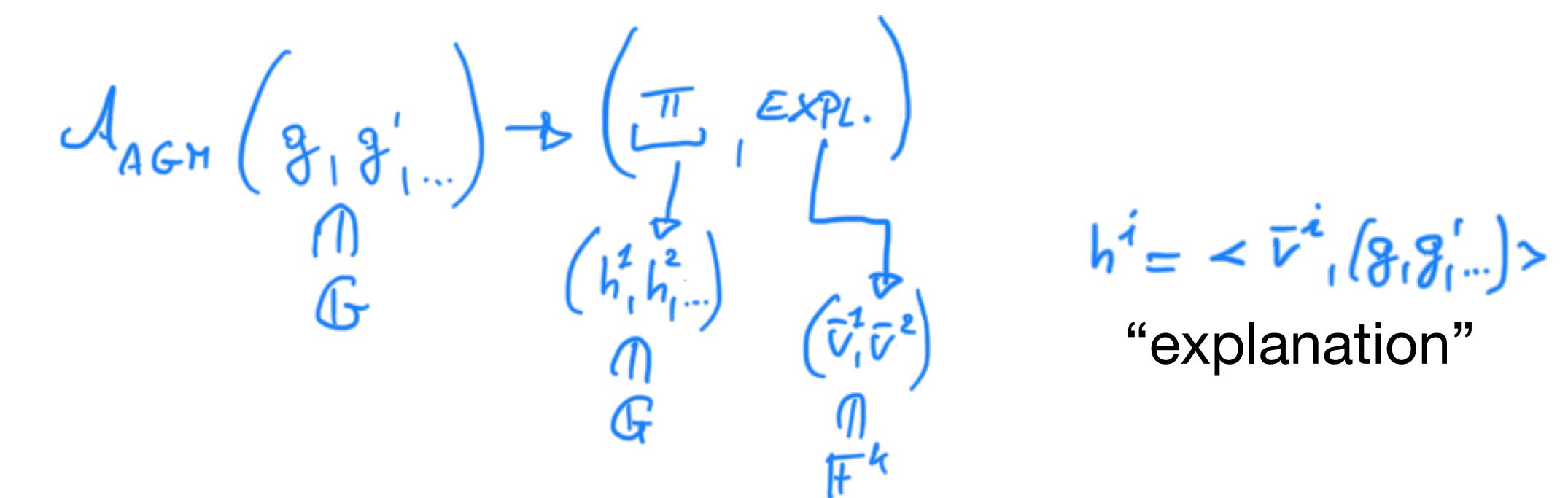
Algebraic Group Model (AGM)

Challenges in Proving the Security of IVC

- **First challenge:** idealized models and “theoretical hygiene”



Random Oracle



Algebraic Group Model (AGM)

- **Second challenge (our focus):** depth of the computation

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

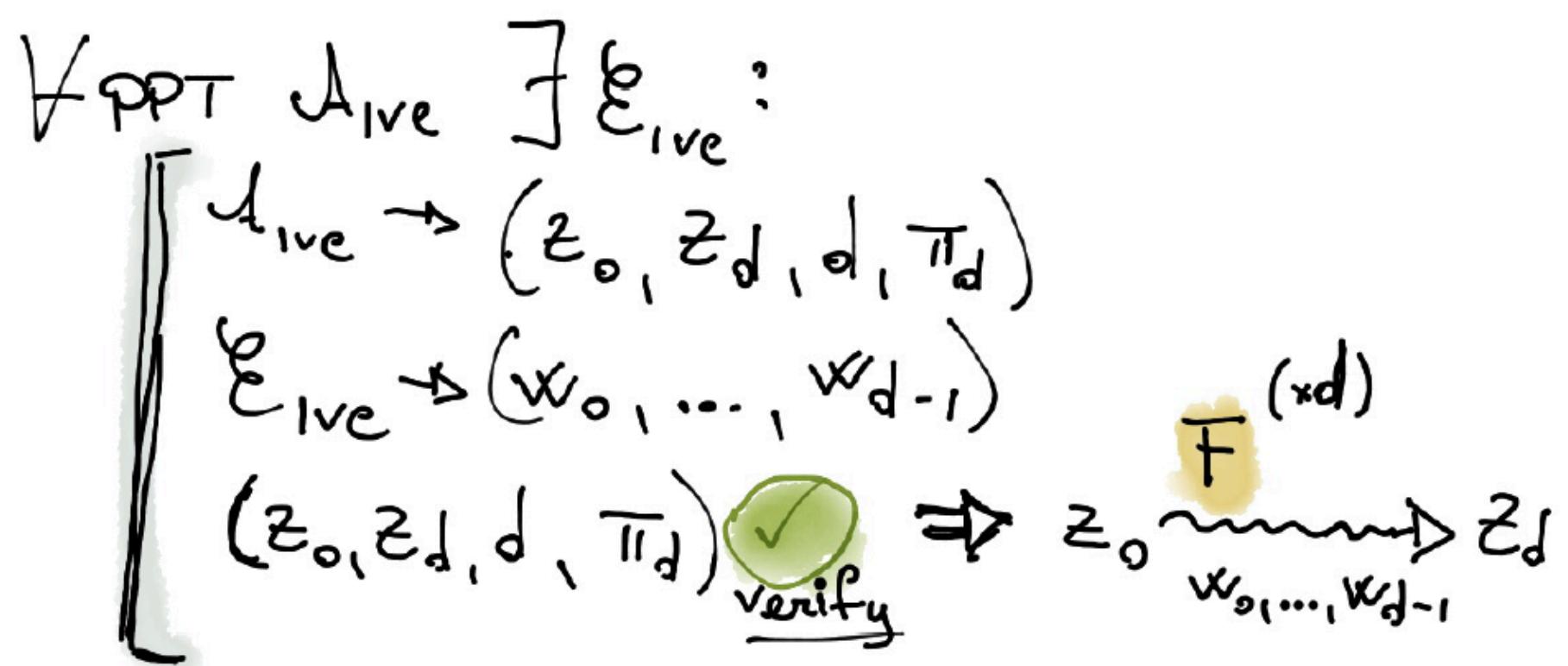
$$A_{\text{live}} \rightarrow (z_0, z_d, d, \pi_d)$$

$$z_0 \xrightarrow[w_0]{F} z_1 \xrightarrow[w_1]{F} \dots \xrightarrow[w_{d-2}]{F} z_{d-1} \xrightarrow[w_{d-1}]{F} z_d$$

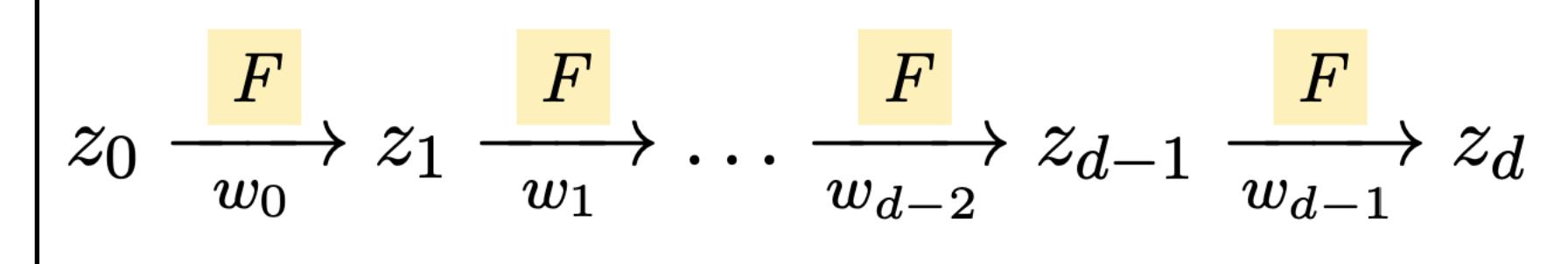
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability



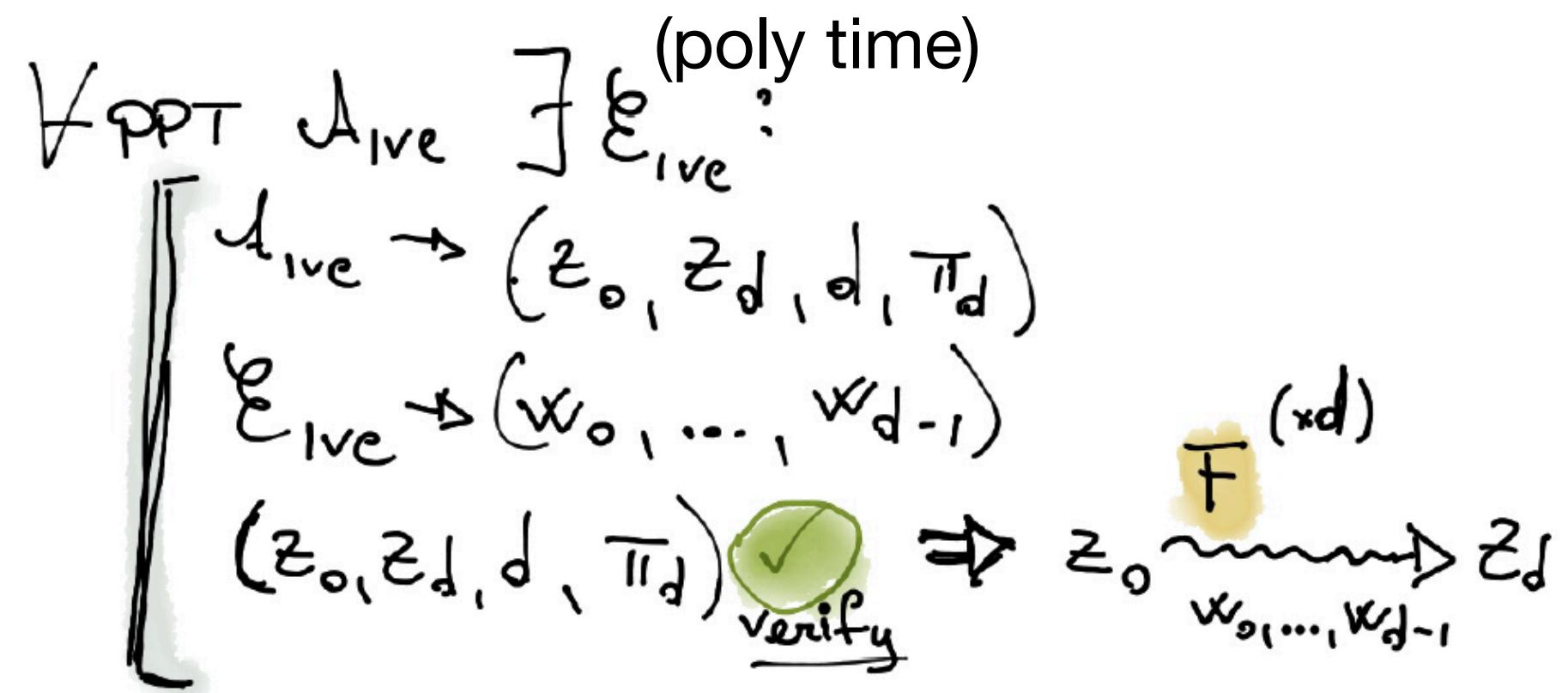
$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$



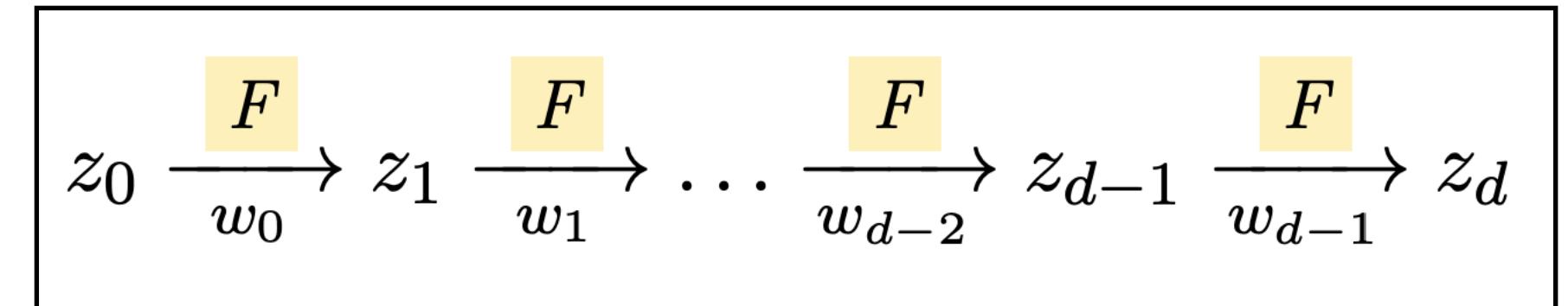
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability



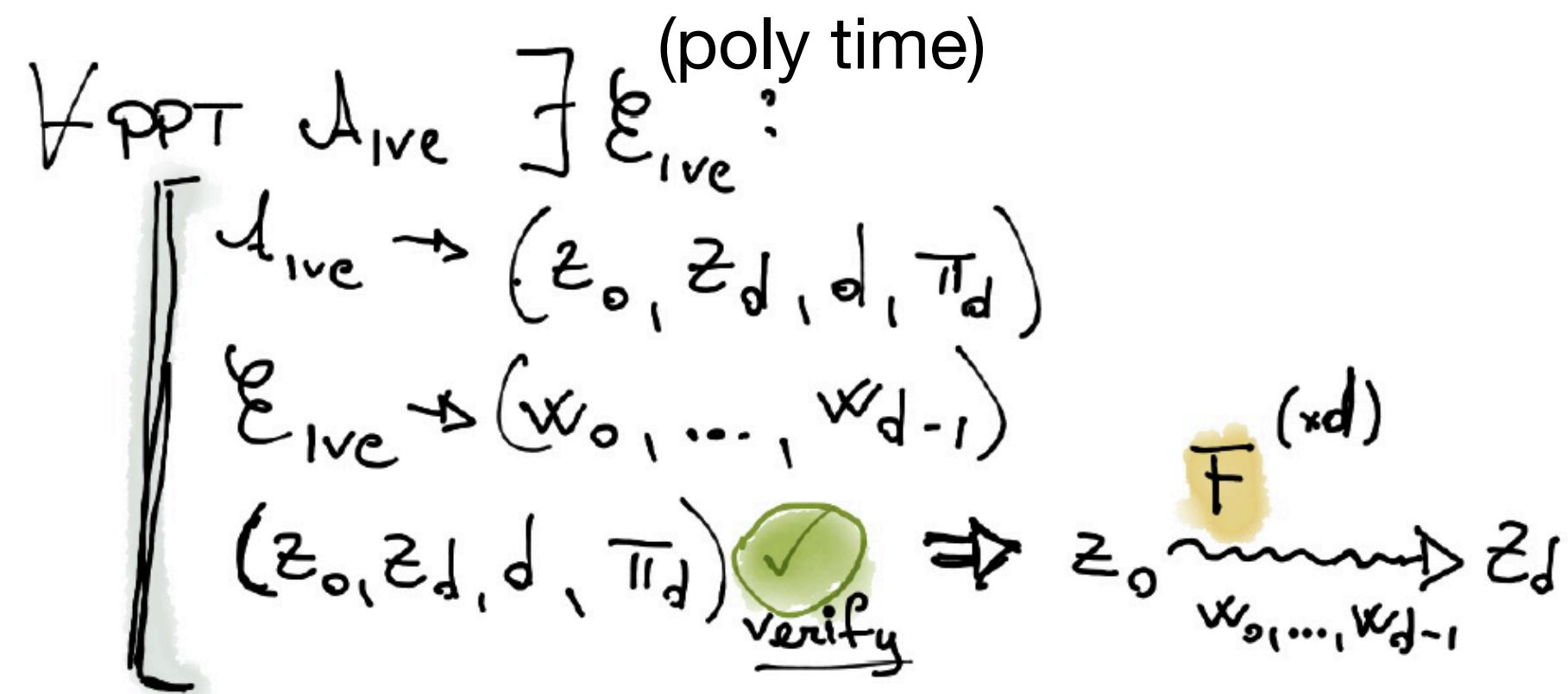
$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$



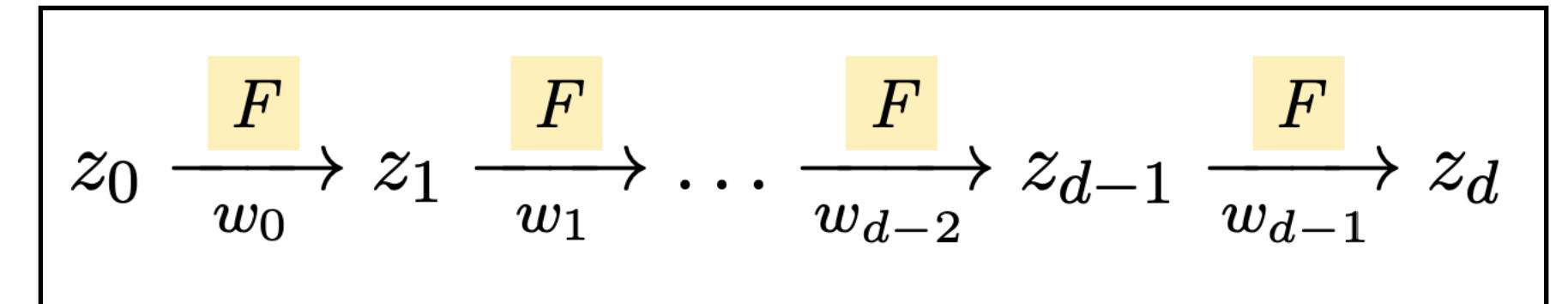
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability



$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$

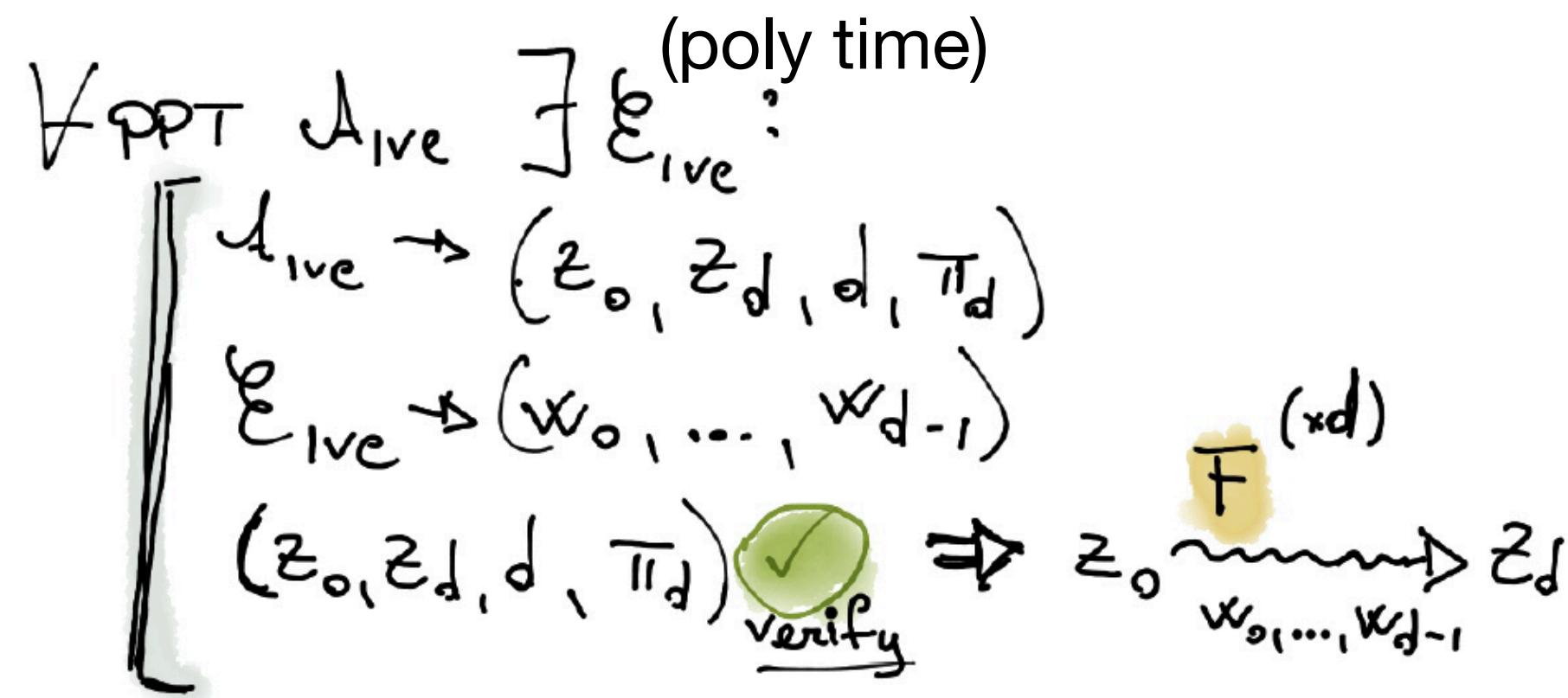


SNARK Prover's statement (Π is a SNARK)

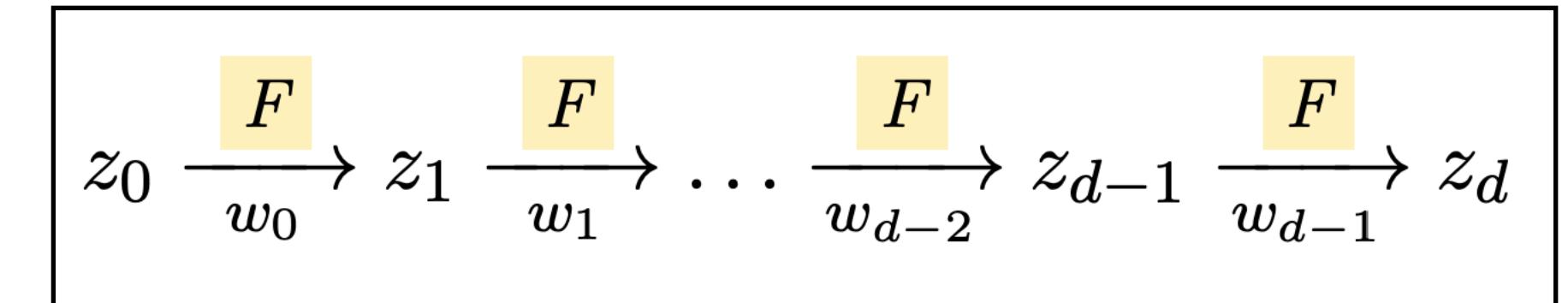
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

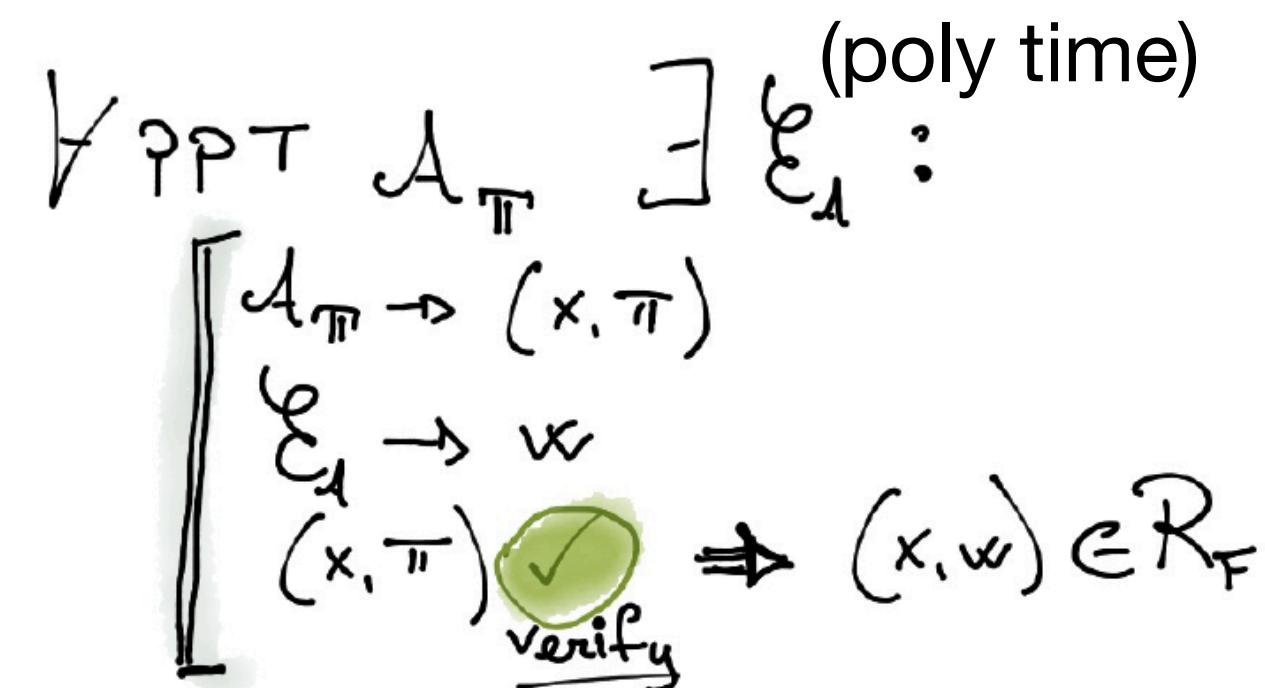
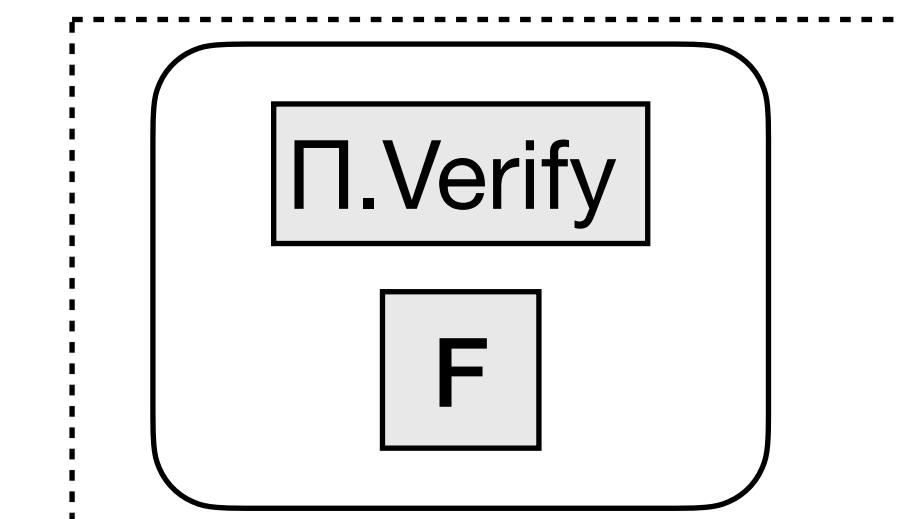
IVC extractability



$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$



SNARK extractability

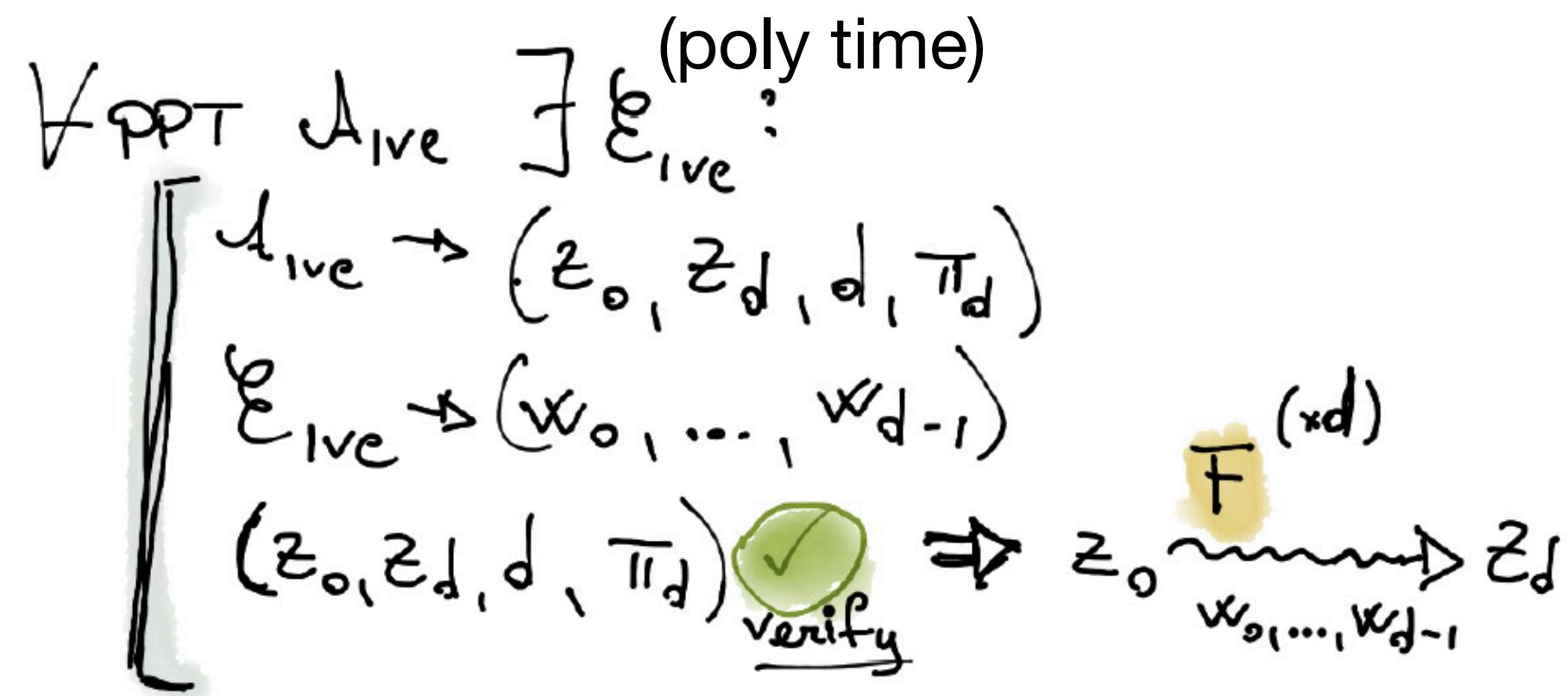


SNARK Prover's statement (Π is a SNARK)

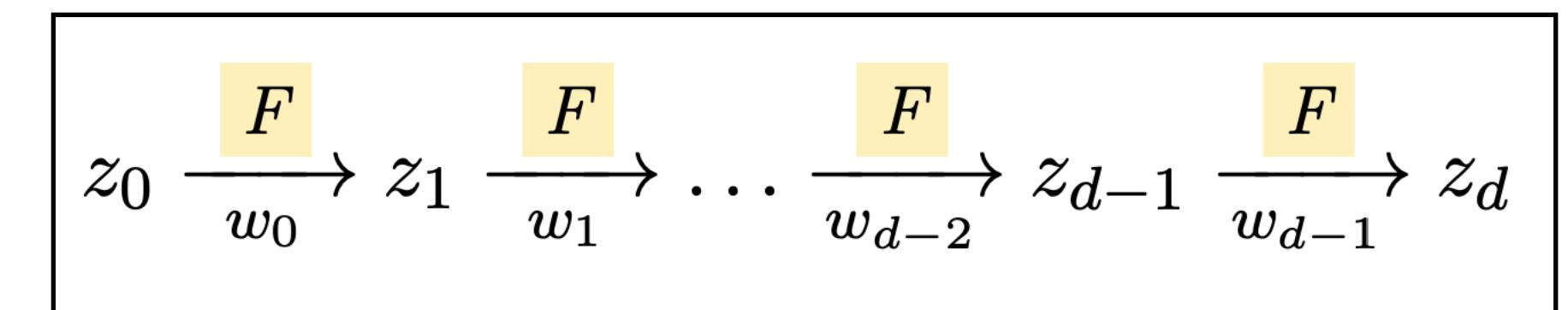
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

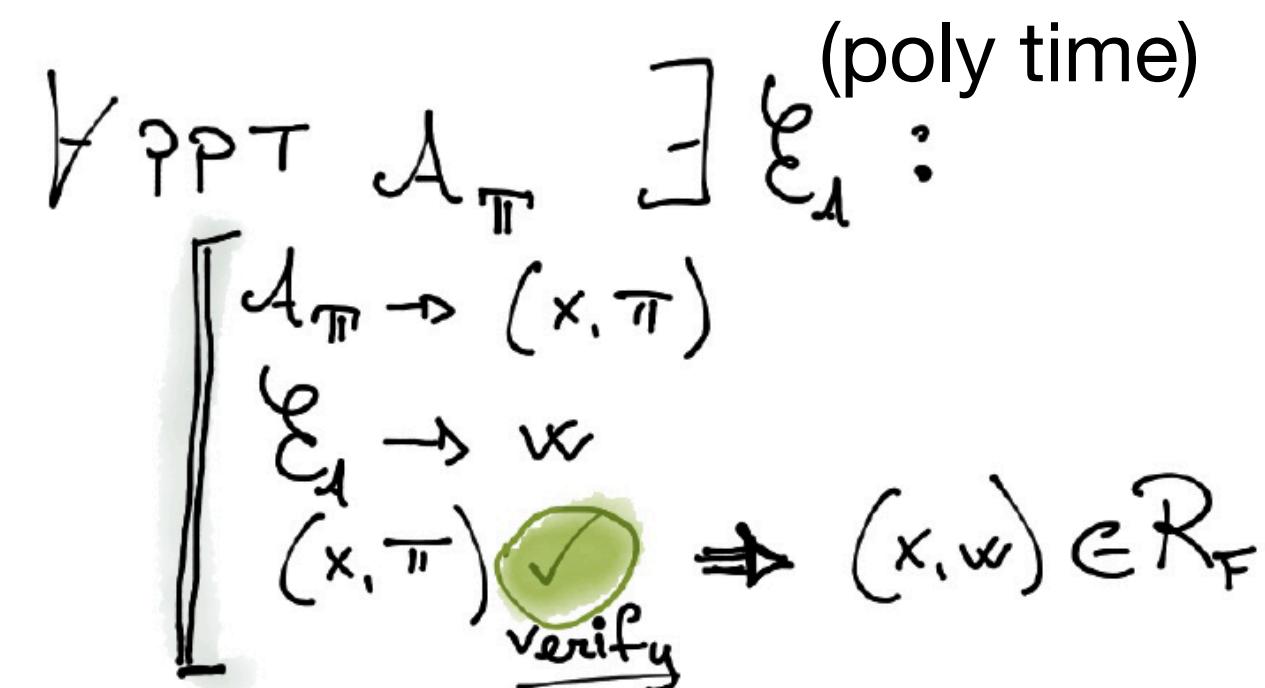
IVC extractability



$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$

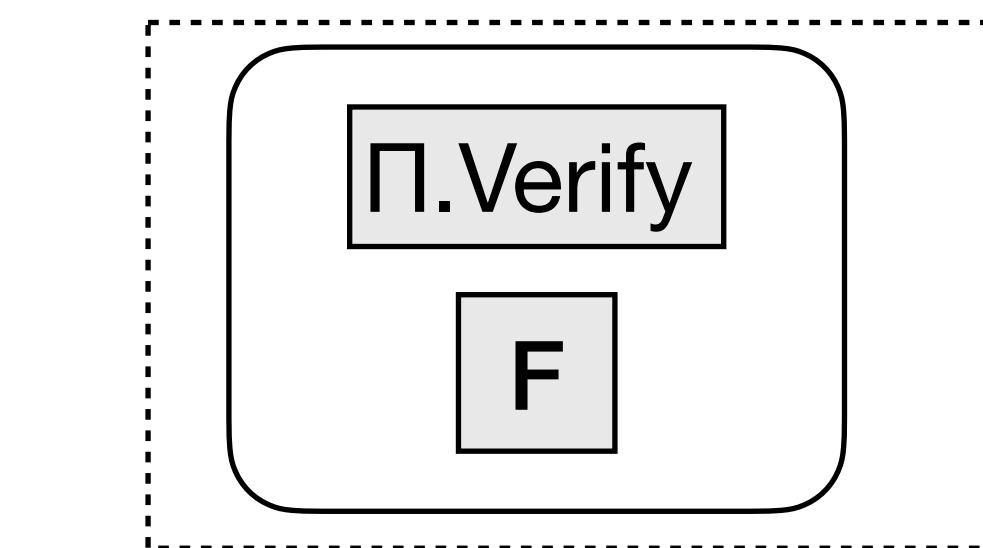


SNARK extractability



OBS:

$$|\mathcal{U}| = T \Rightarrow \mathcal{E}_{\text{P}} = T^k \quad (k = \Theta(t))$$

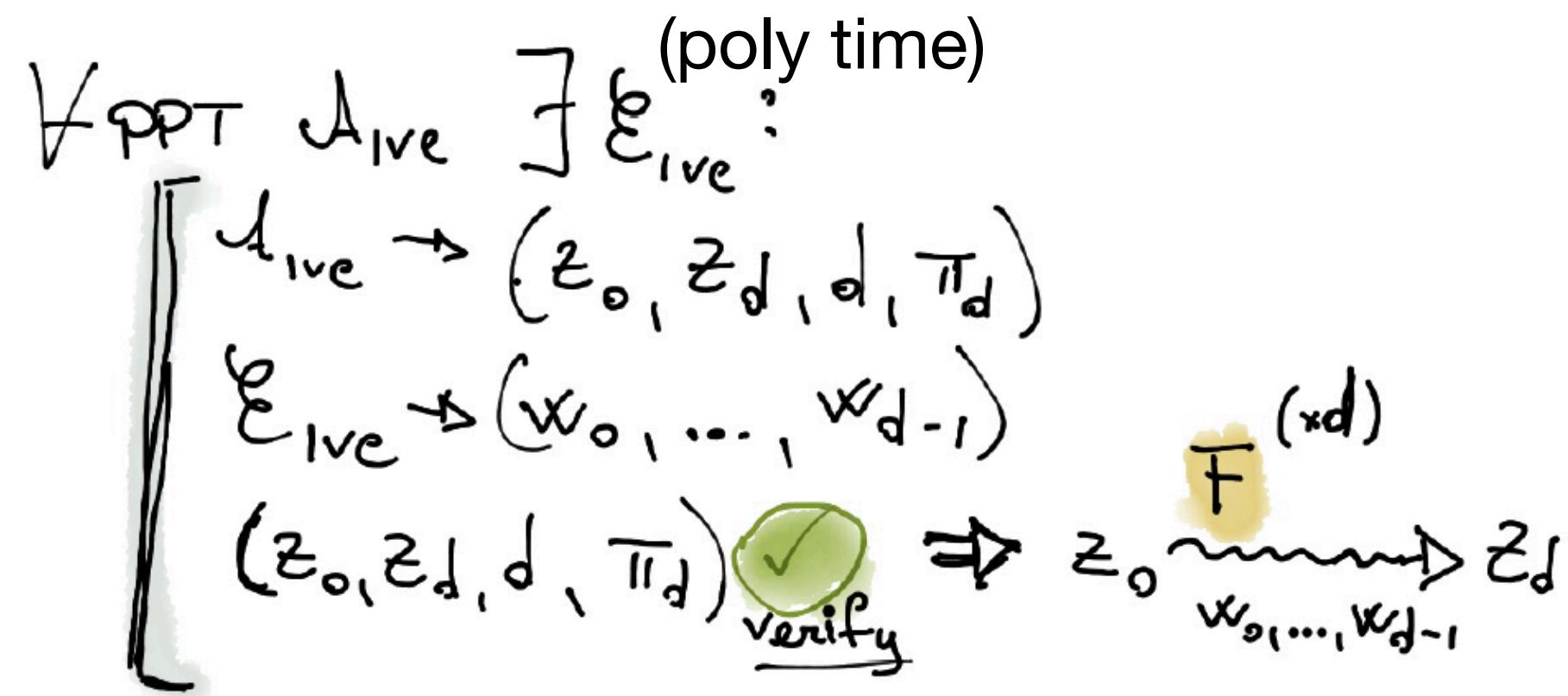
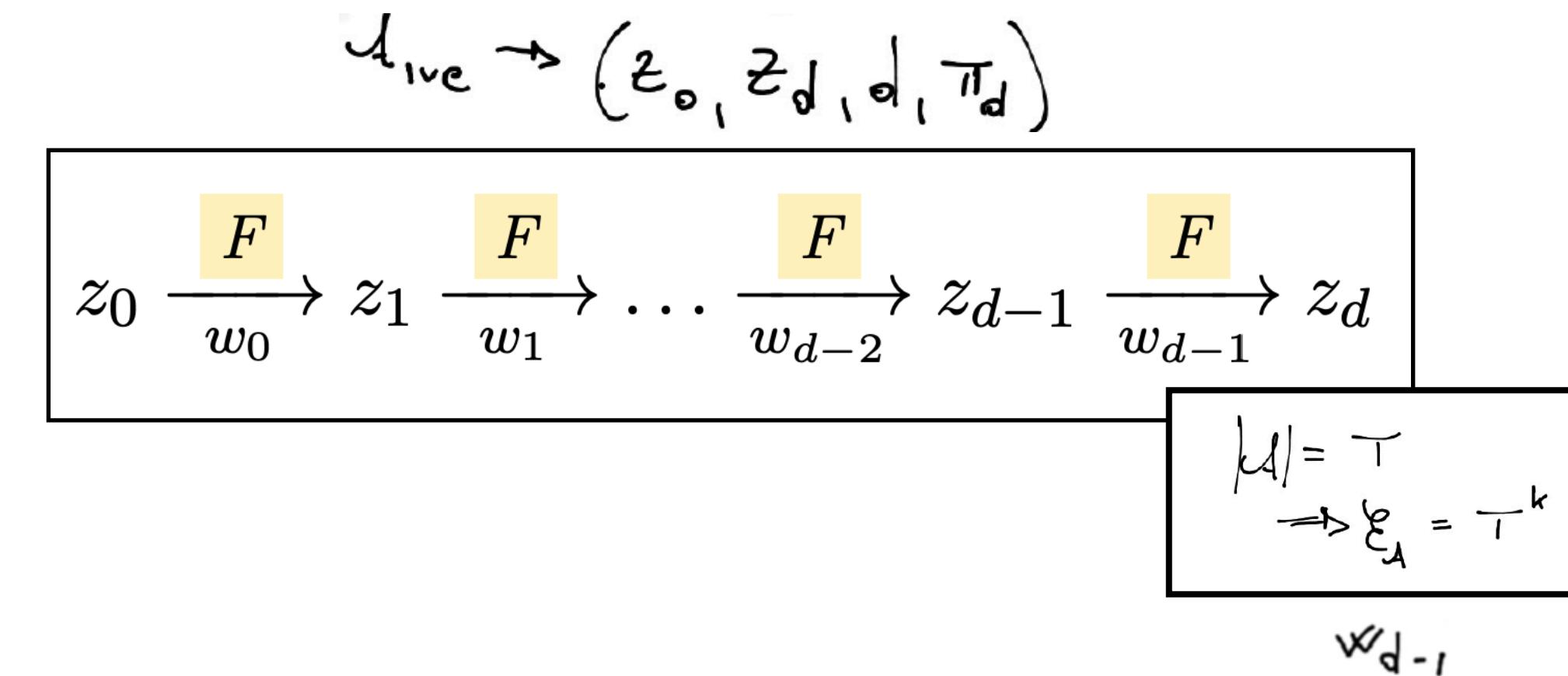


SNARK Prover's statement (Π is a SNARK)

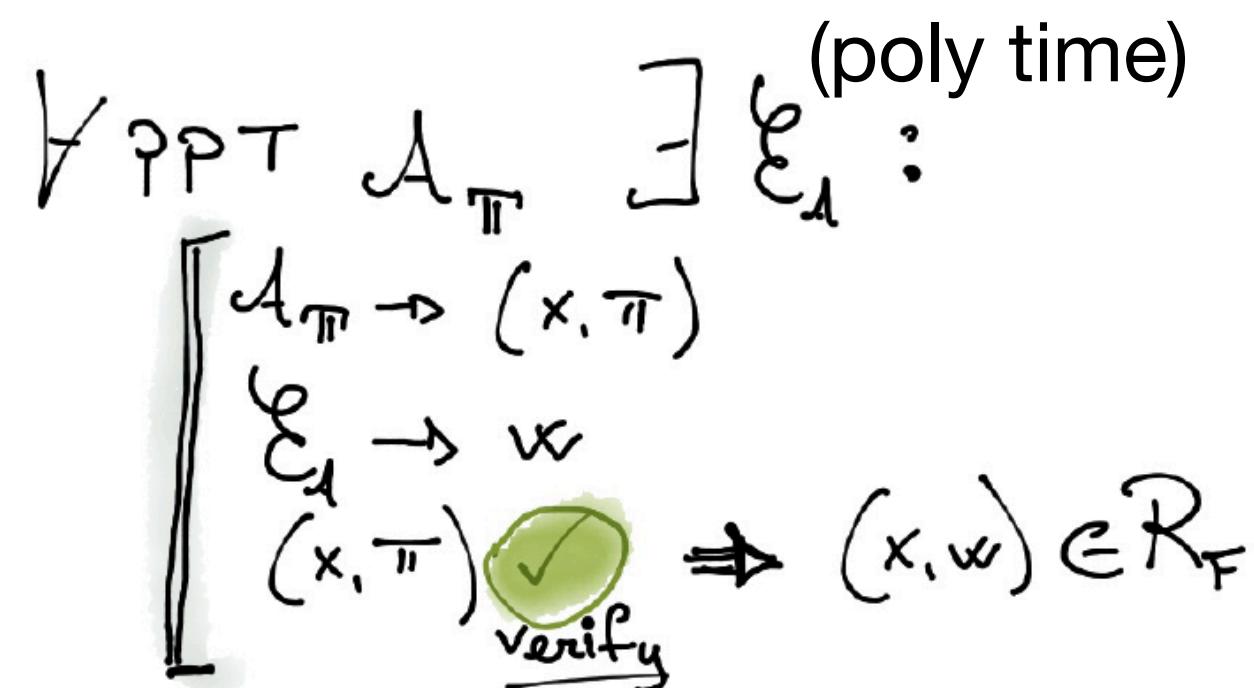
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability

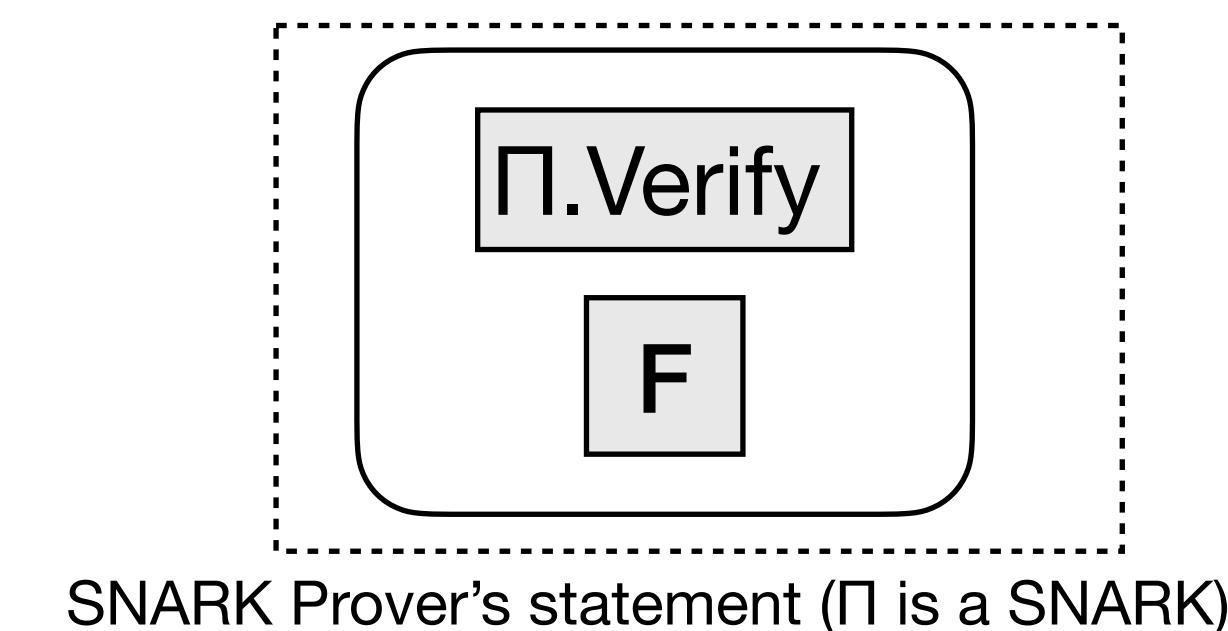


SNARK extractability



OBS:

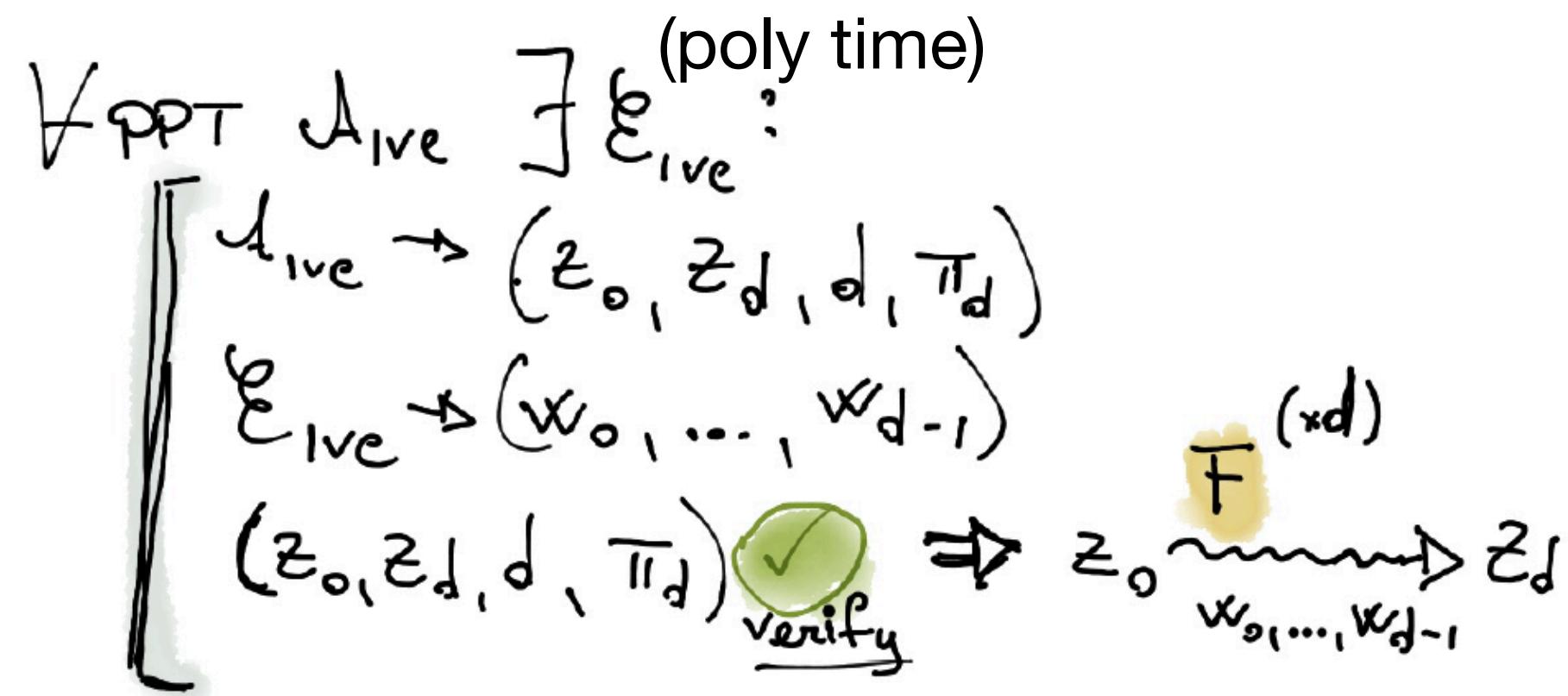
$$|\mathcal{U}| = \top \Rightarrow \mathcal{E}_{\mathcal{A}} = \top^k \quad (k = \Theta(t))$$



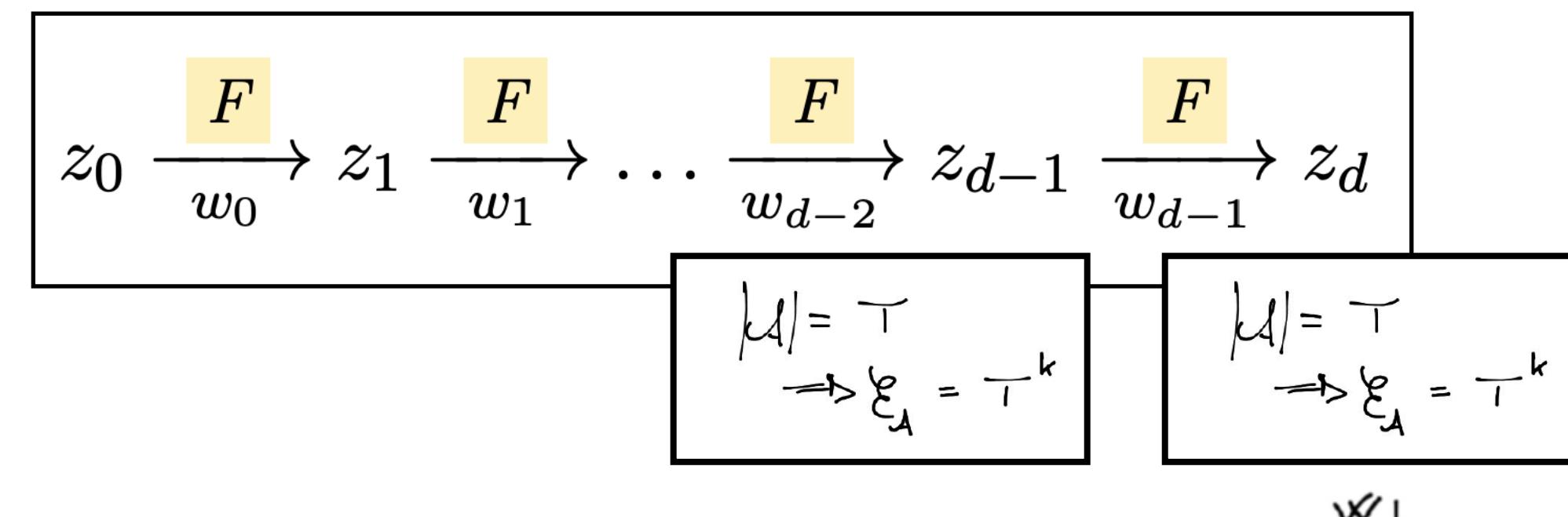
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

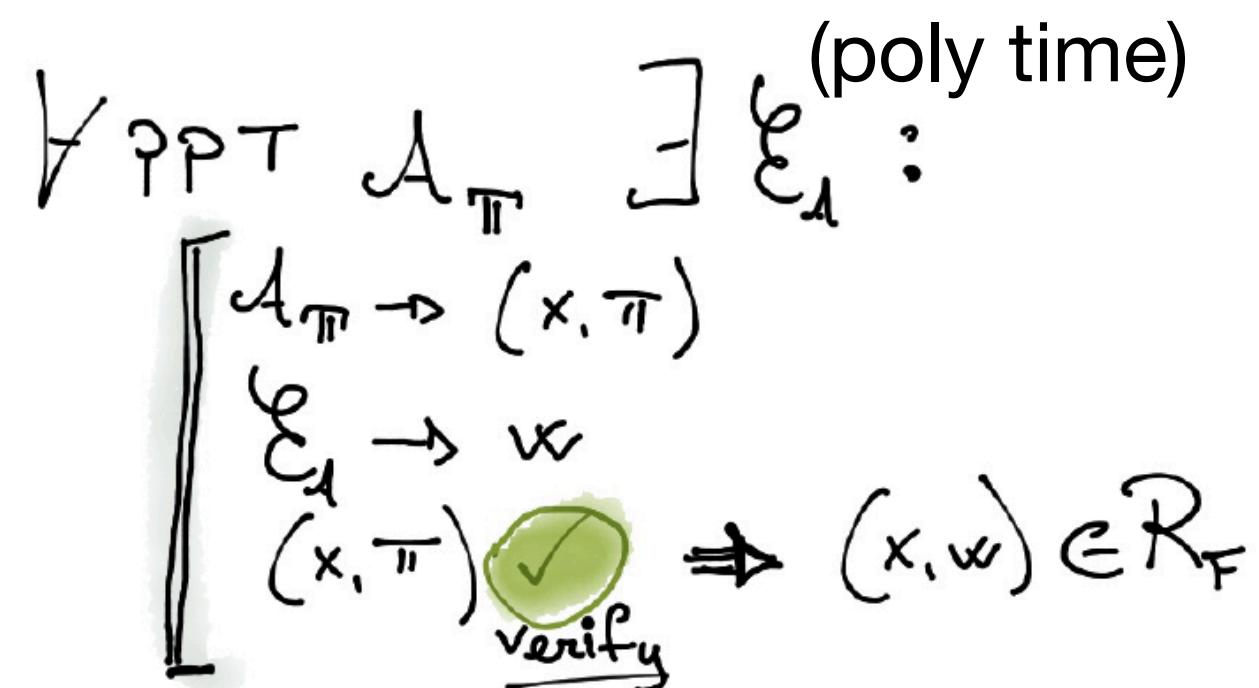
IVC extractability



$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$

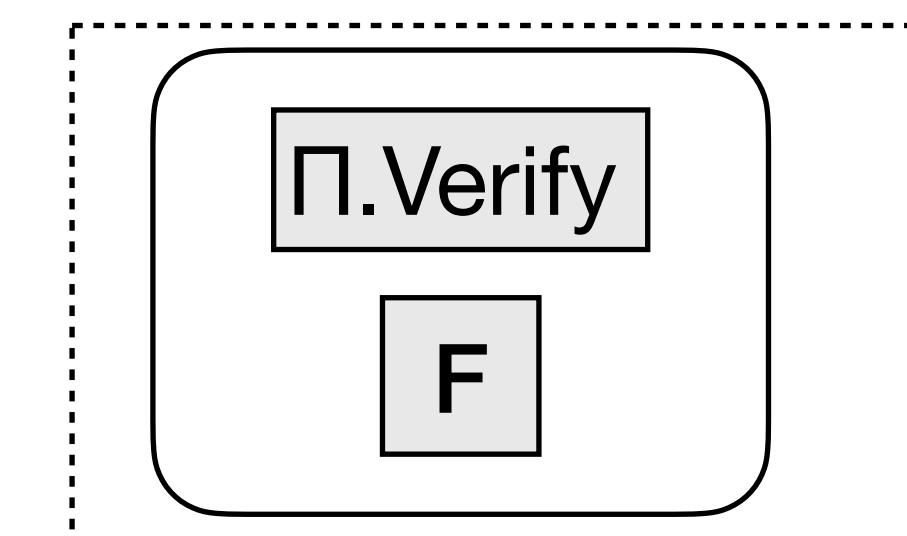


SNARK extractability



OBS:

$$\mathcal{M} = \top \Rightarrow \mathcal{E}_A = \top^k \quad (k = \Theta(t))$$

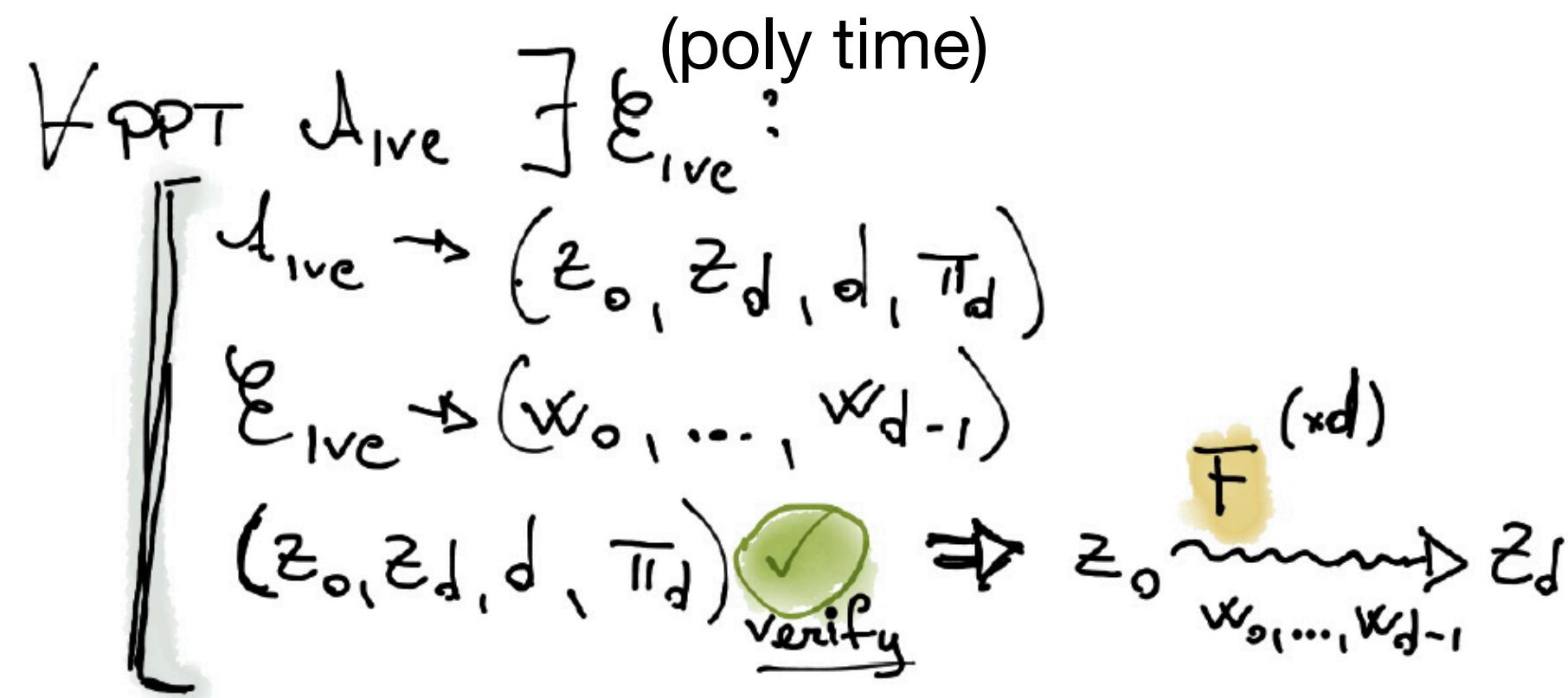


SNARK Prover's statement (Π is a SNARK)

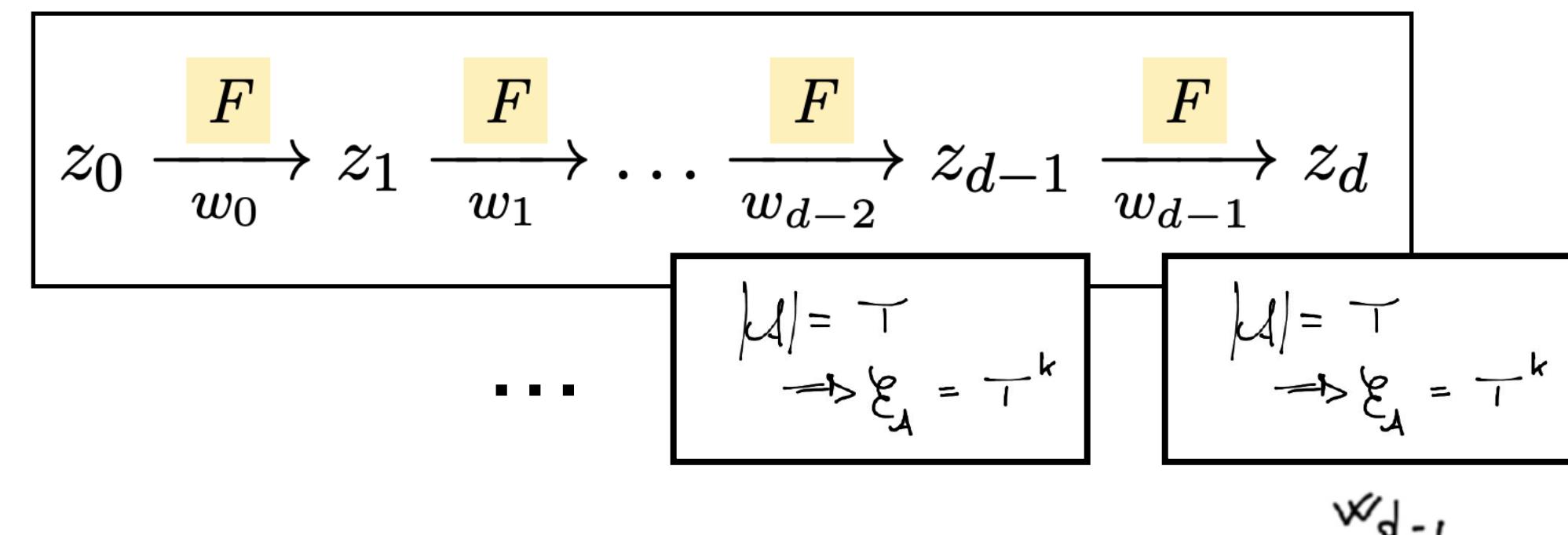
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

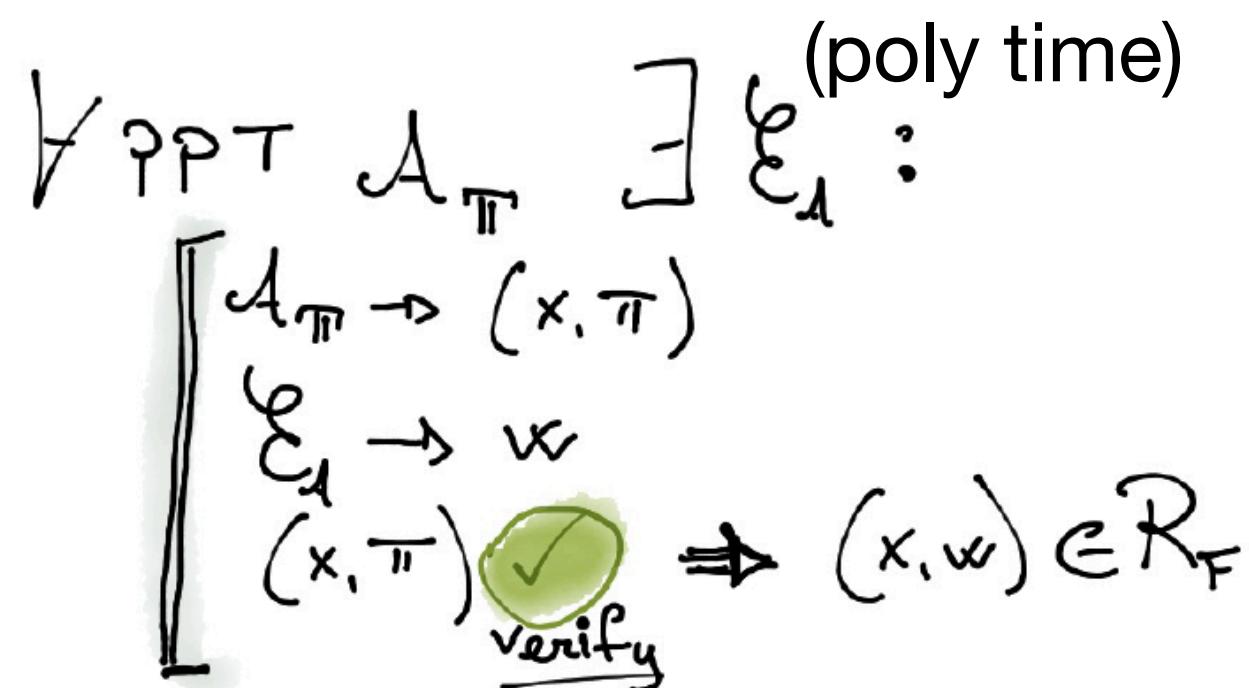
IVC extractability



$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$

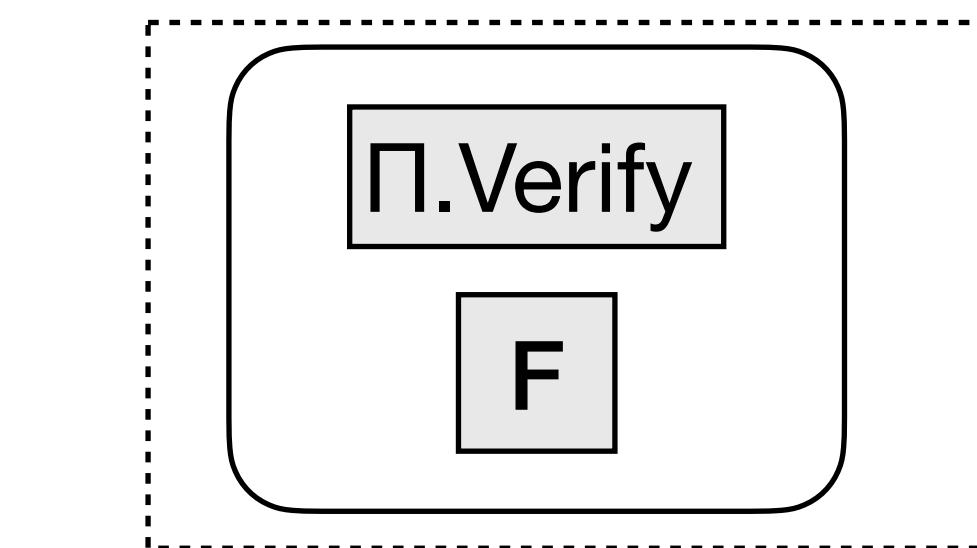


SNARK extractability



OBS:

$$|\mathcal{U}| = \top \Rightarrow \mathcal{E}_A = \top^k \quad (k = \Theta(t))$$

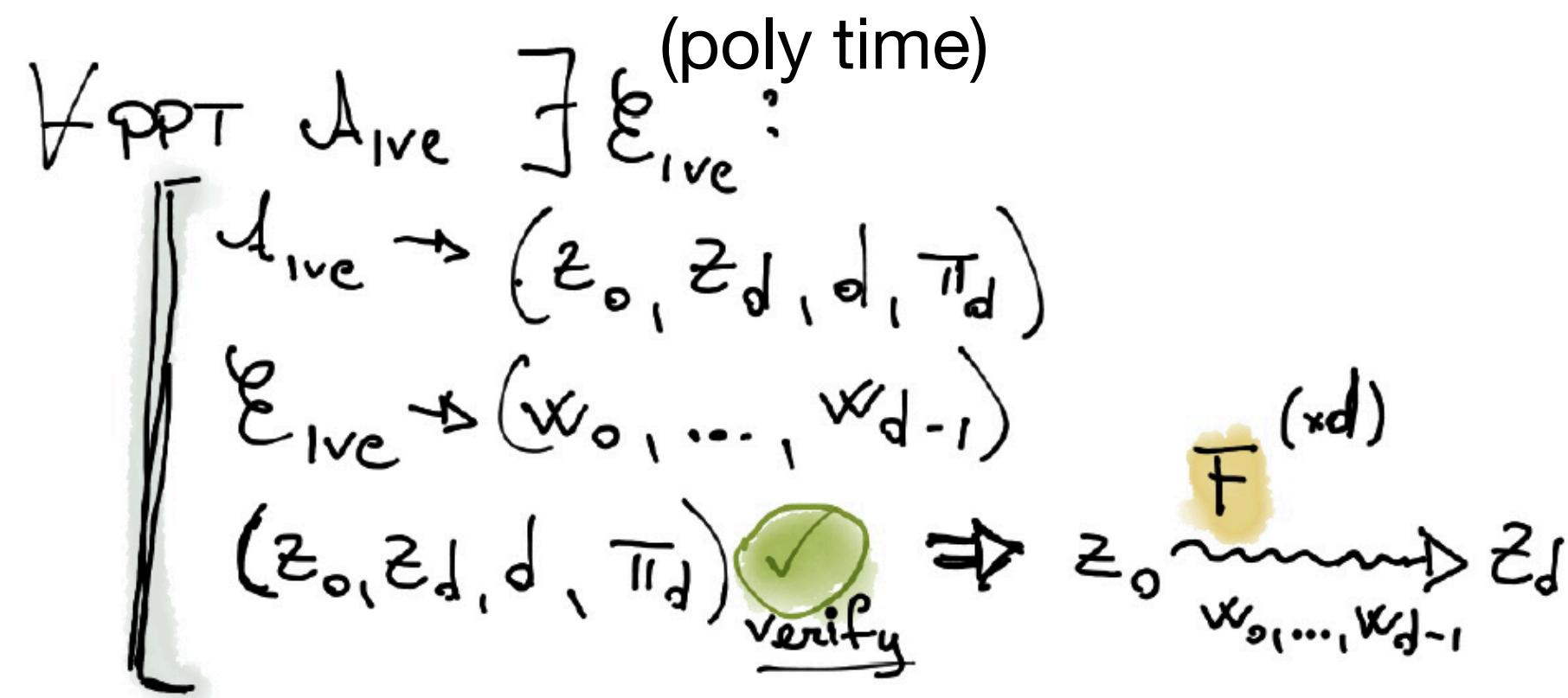


SNARK Prover's statement (Π is a SNARK)

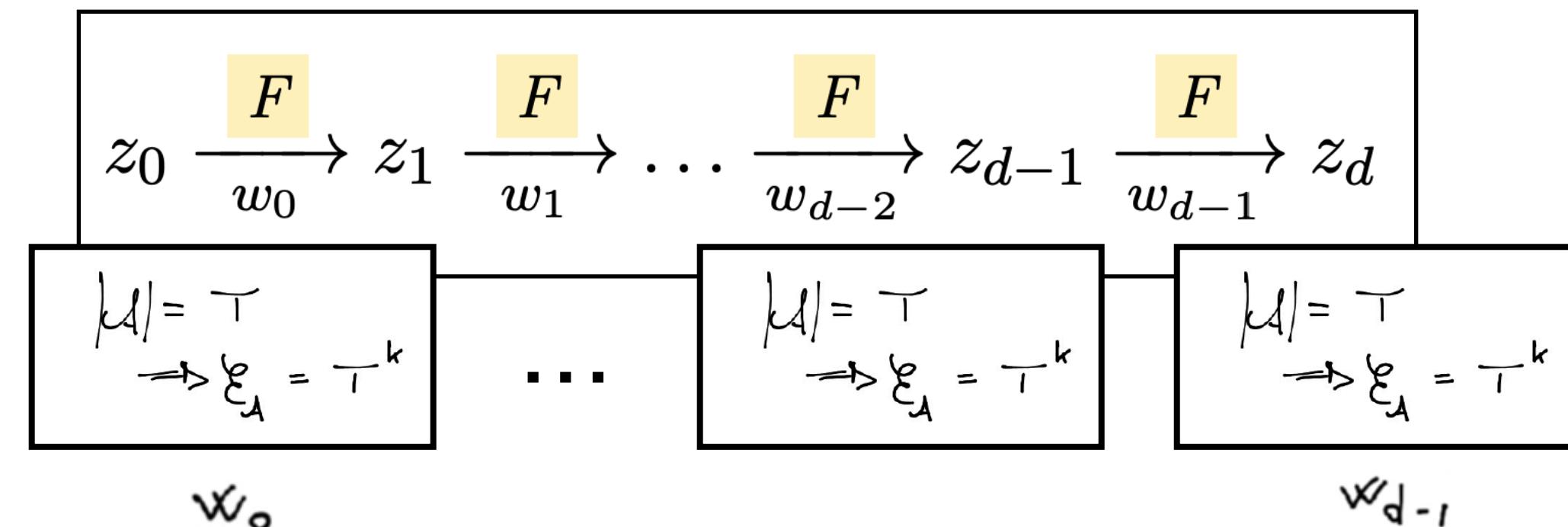
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

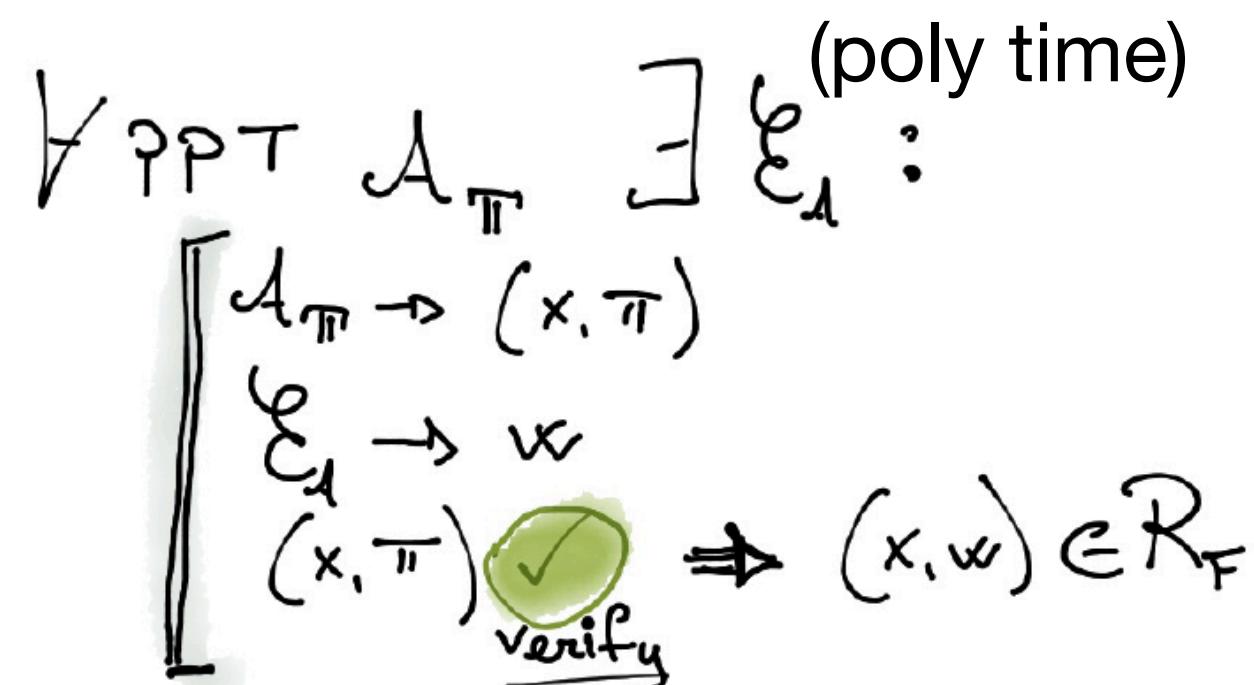
IVC extractability



$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$

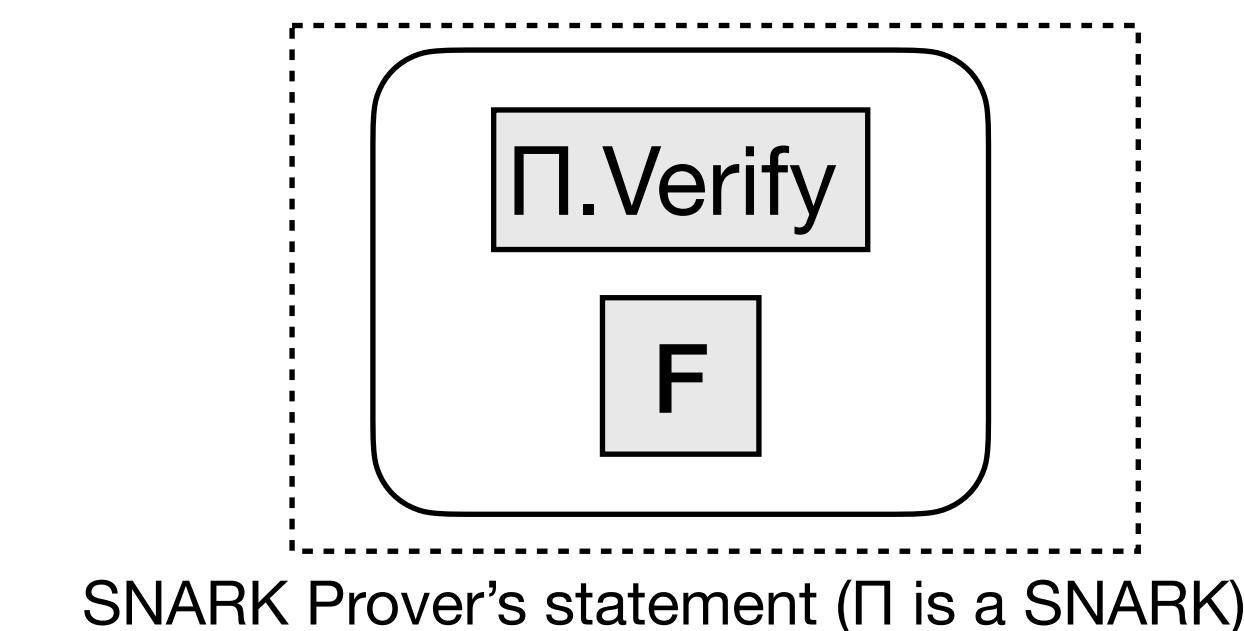


SNARK extractability



OBS:

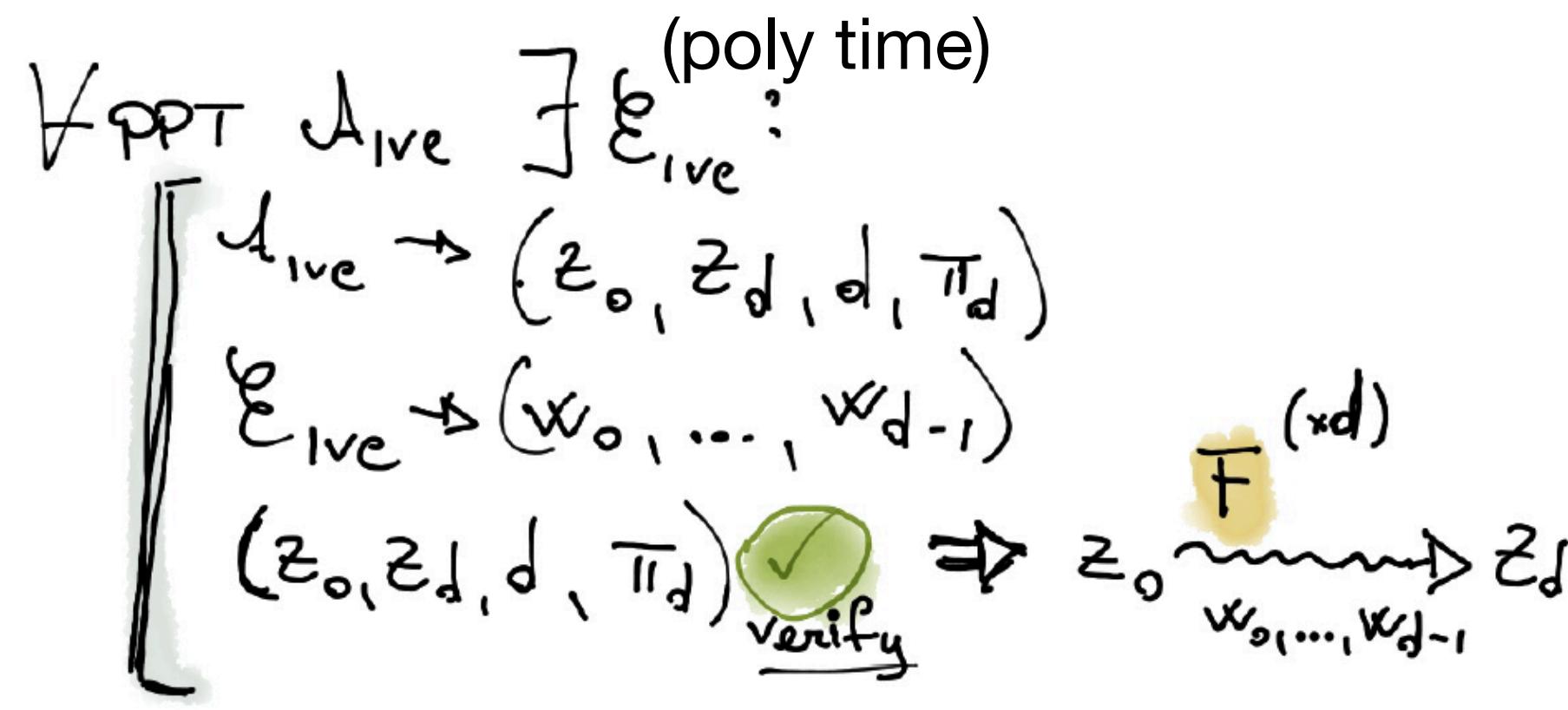
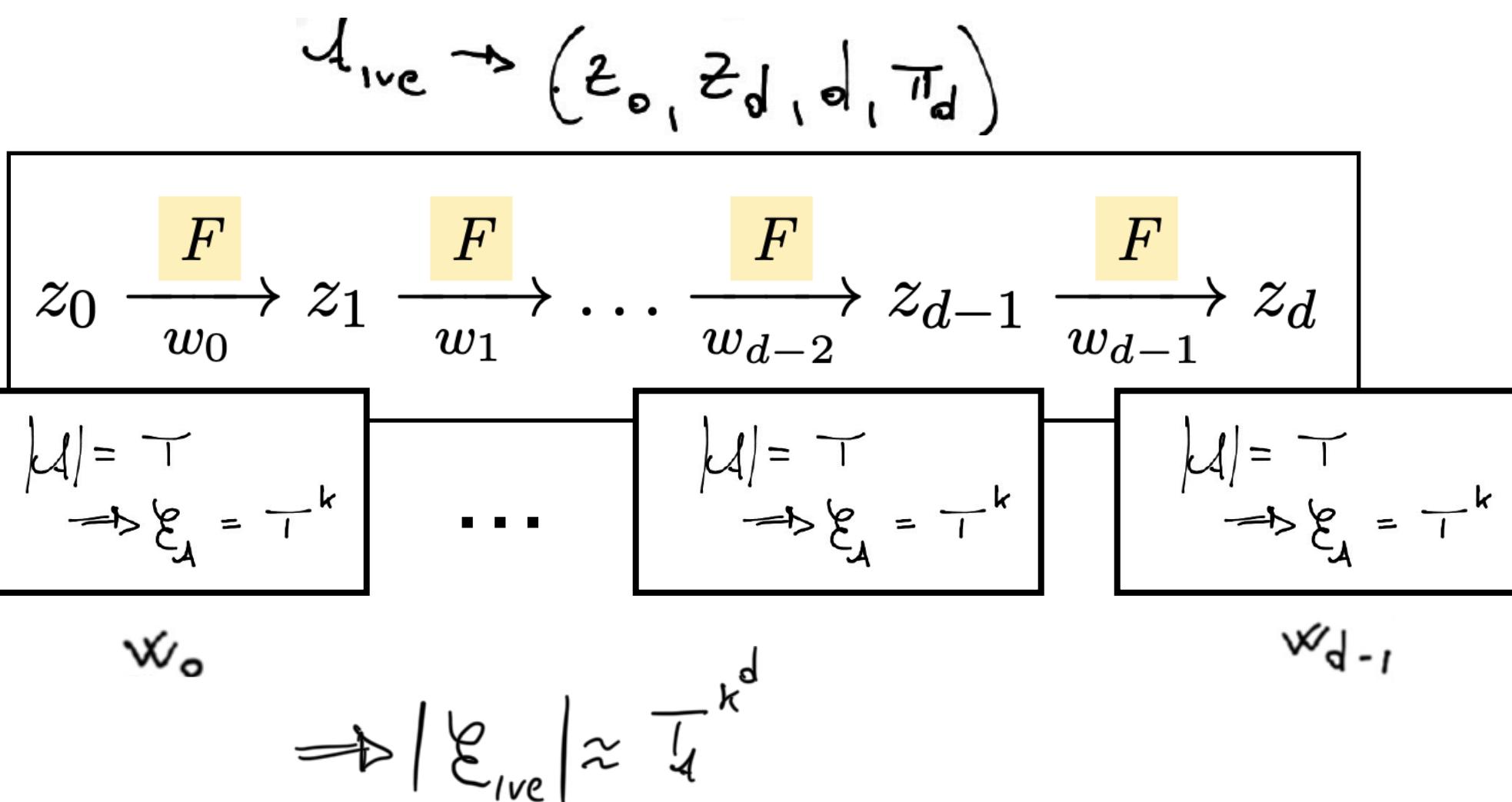
$$\mathcal{U} = \top \Rightarrow \mathcal{E}_A = \top^k \quad (k = \Theta(t))$$



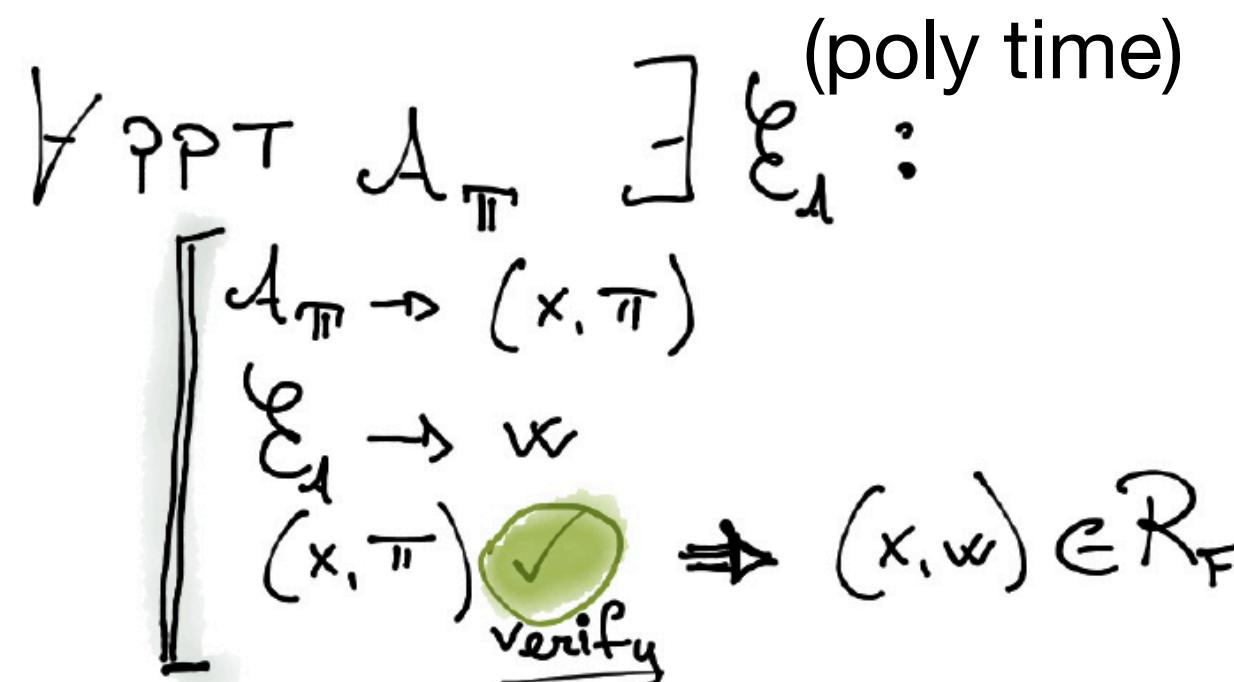
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability

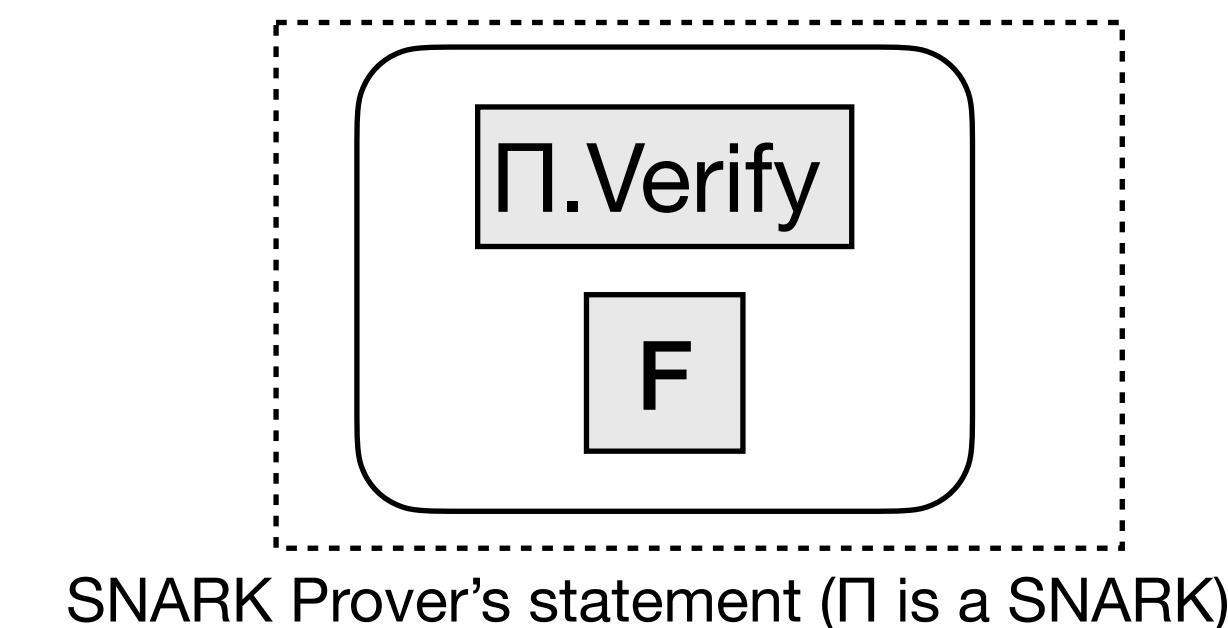


SNARK extractability



OBS:

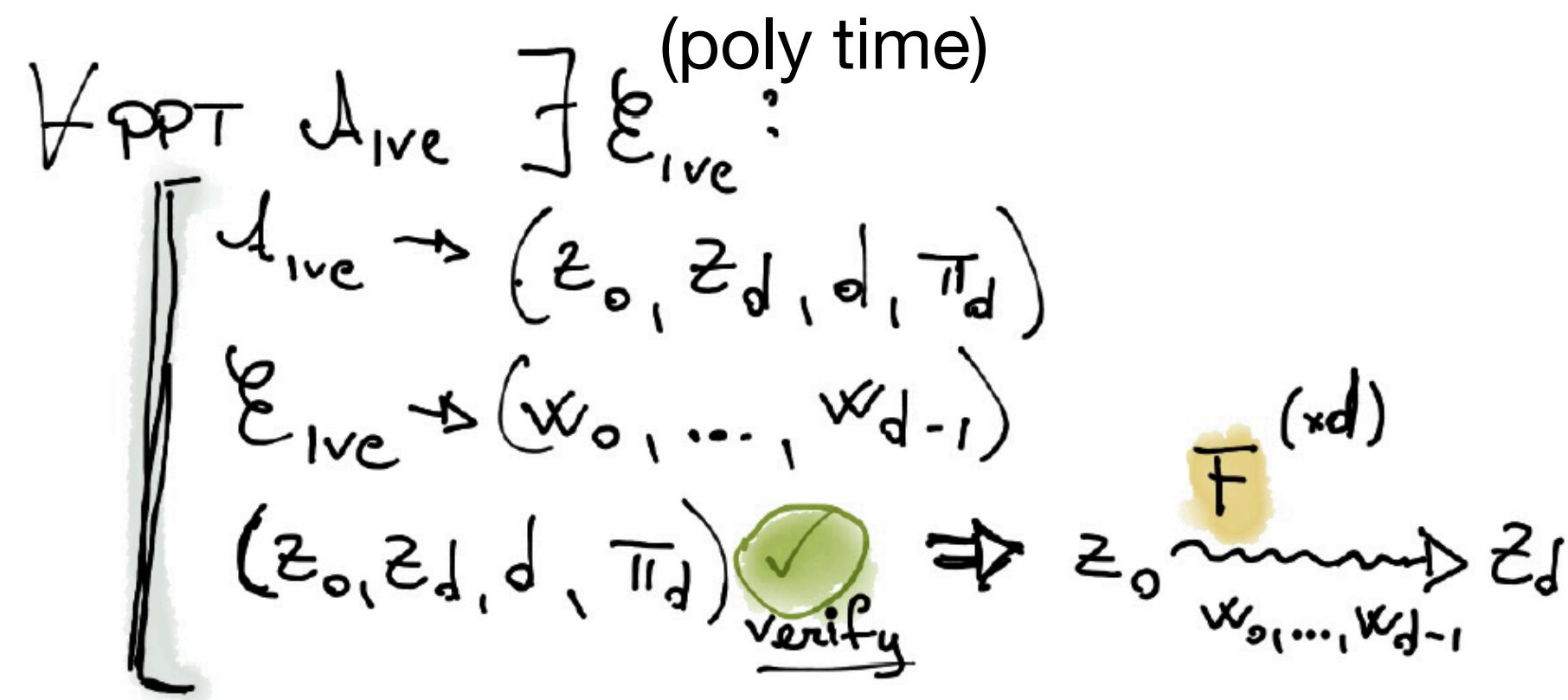
$$|\mathcal{E}_{\text{P}}| = \overline{T}^k \quad (k = \Theta(t))$$



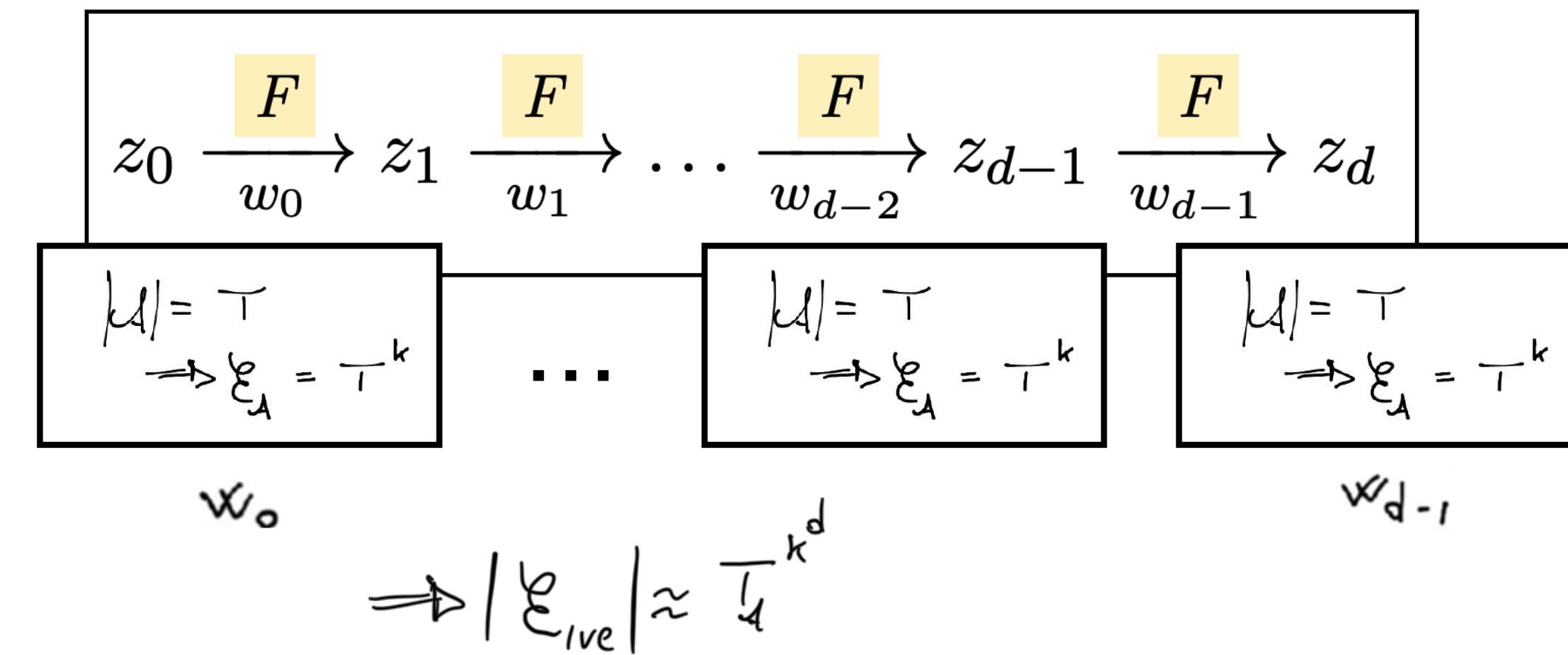
How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

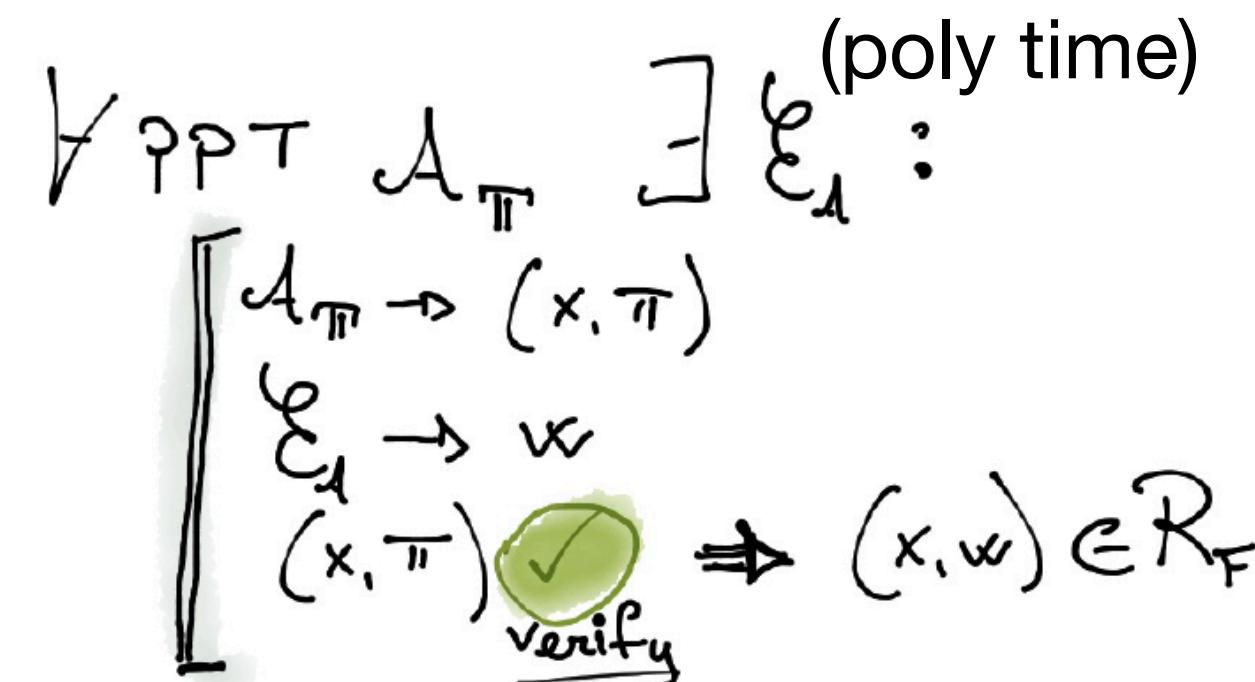
IVC extractability



$$\mathcal{A}_{\text{Ive}} \rightarrow (z_0, z_d, d, \pi_d)$$

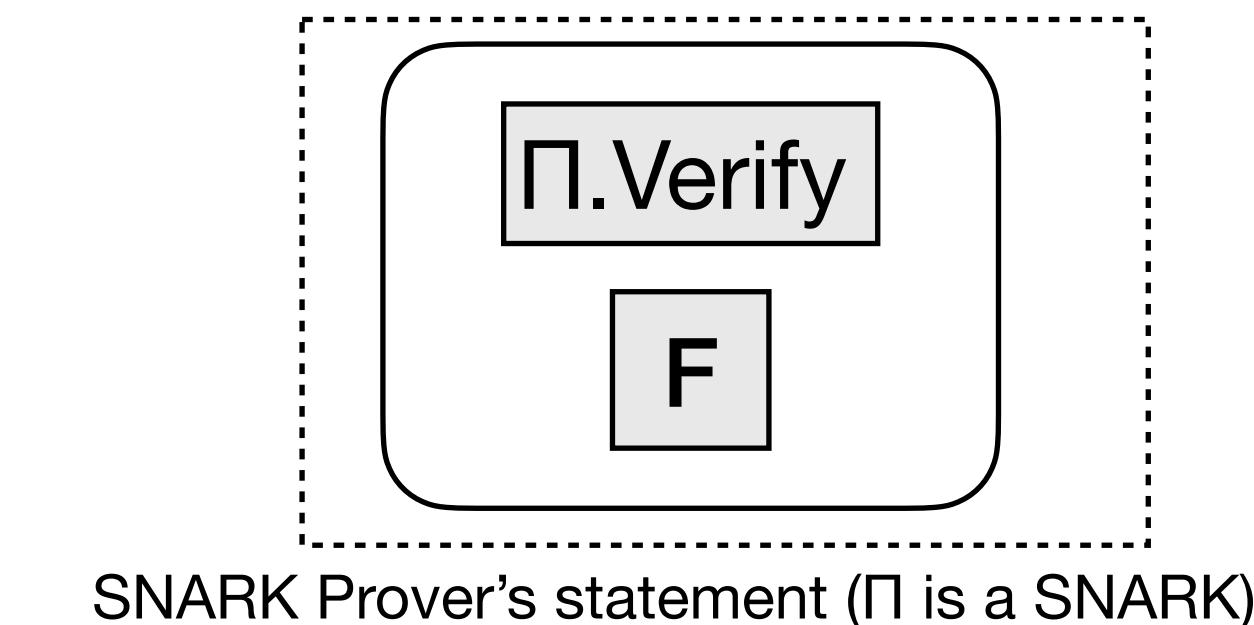


SNARK extractability



OBS:

$$|\mathcal{U}| = \overline{T} \Rightarrow \mathcal{E}_A = \overline{T}^k \quad (k = \Theta(t))$$



The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

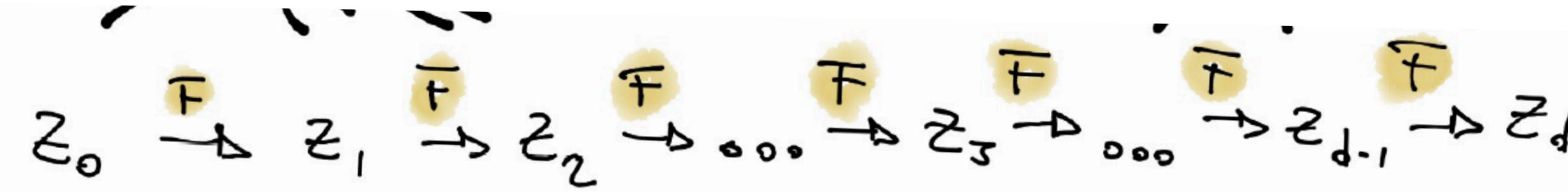
December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.



The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

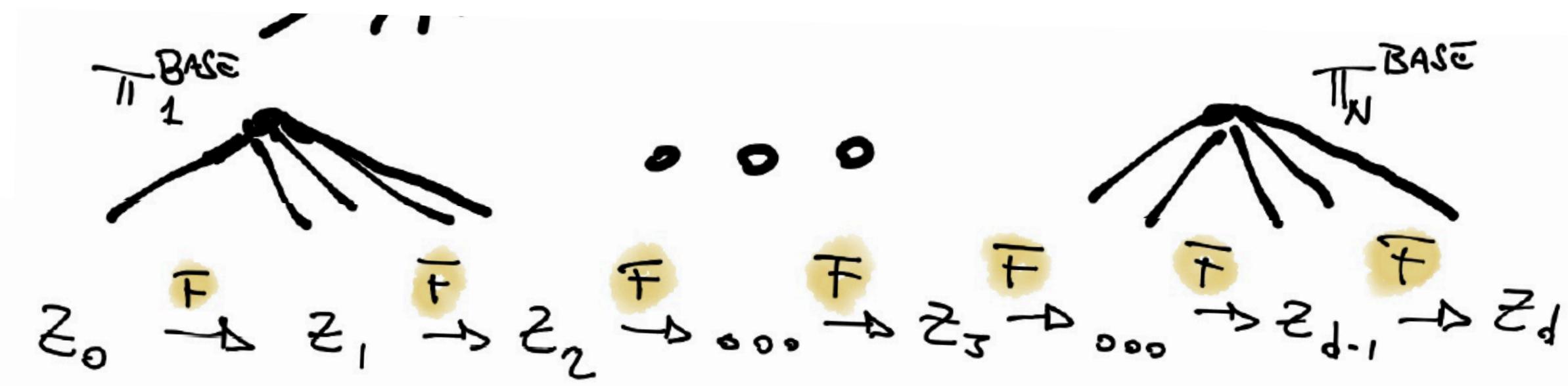
Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.



The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

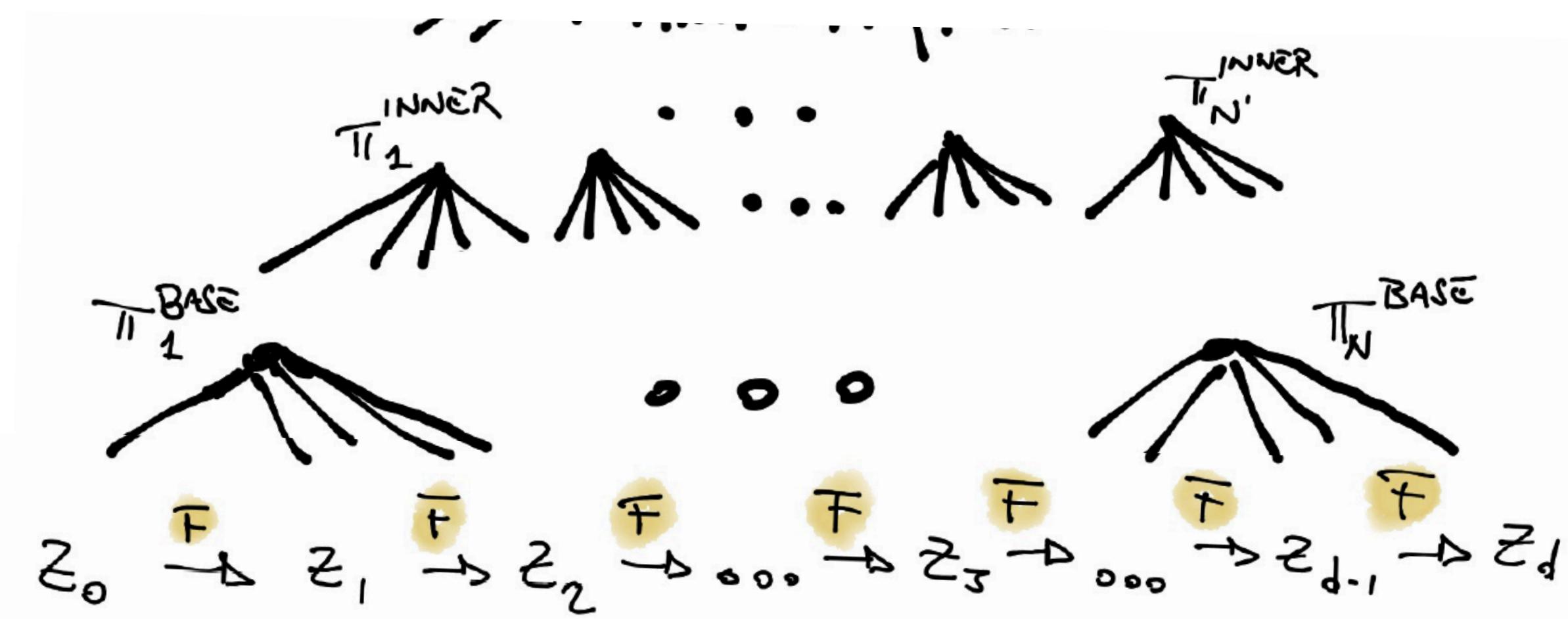
Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.



The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

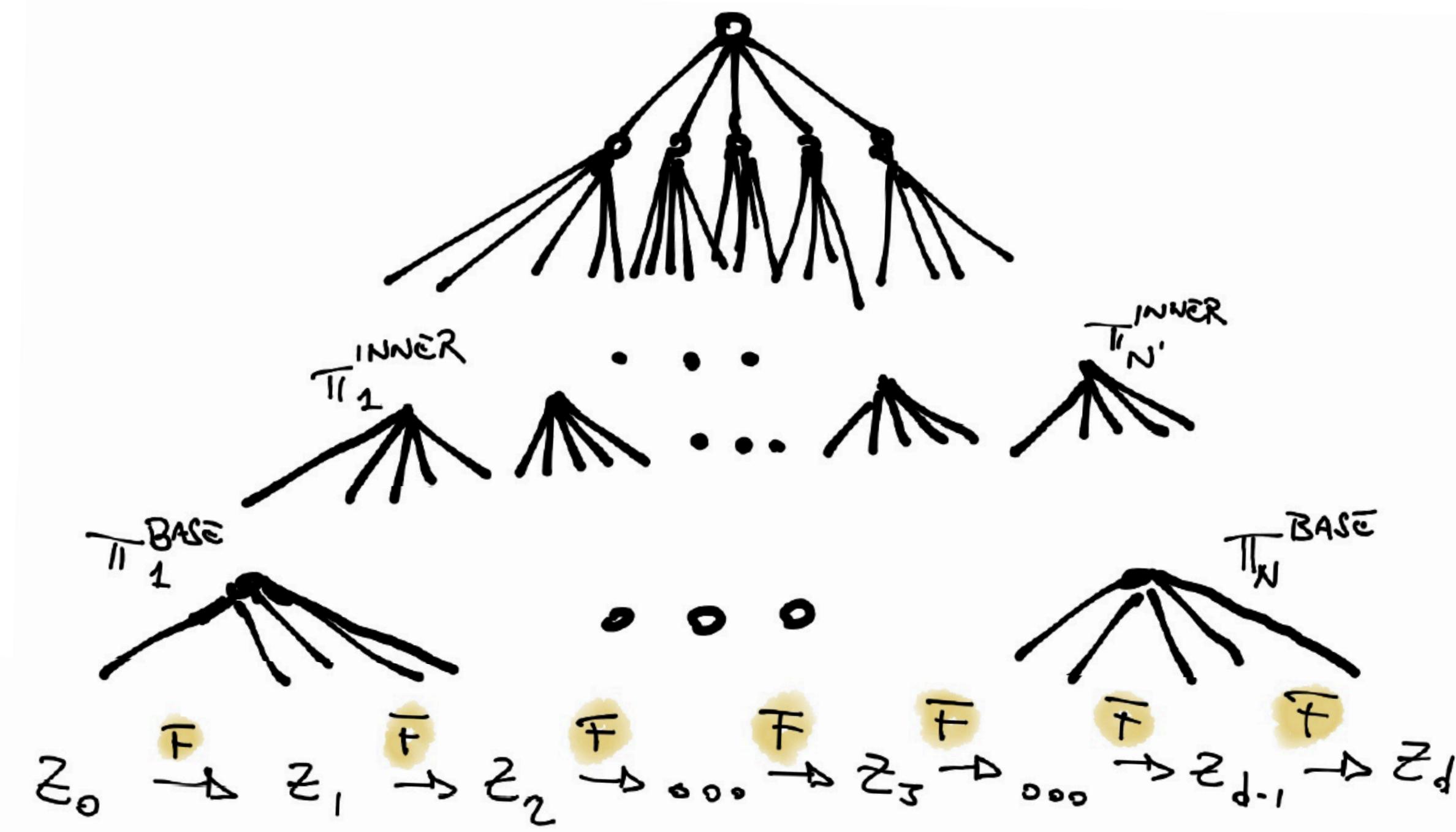
Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.



The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

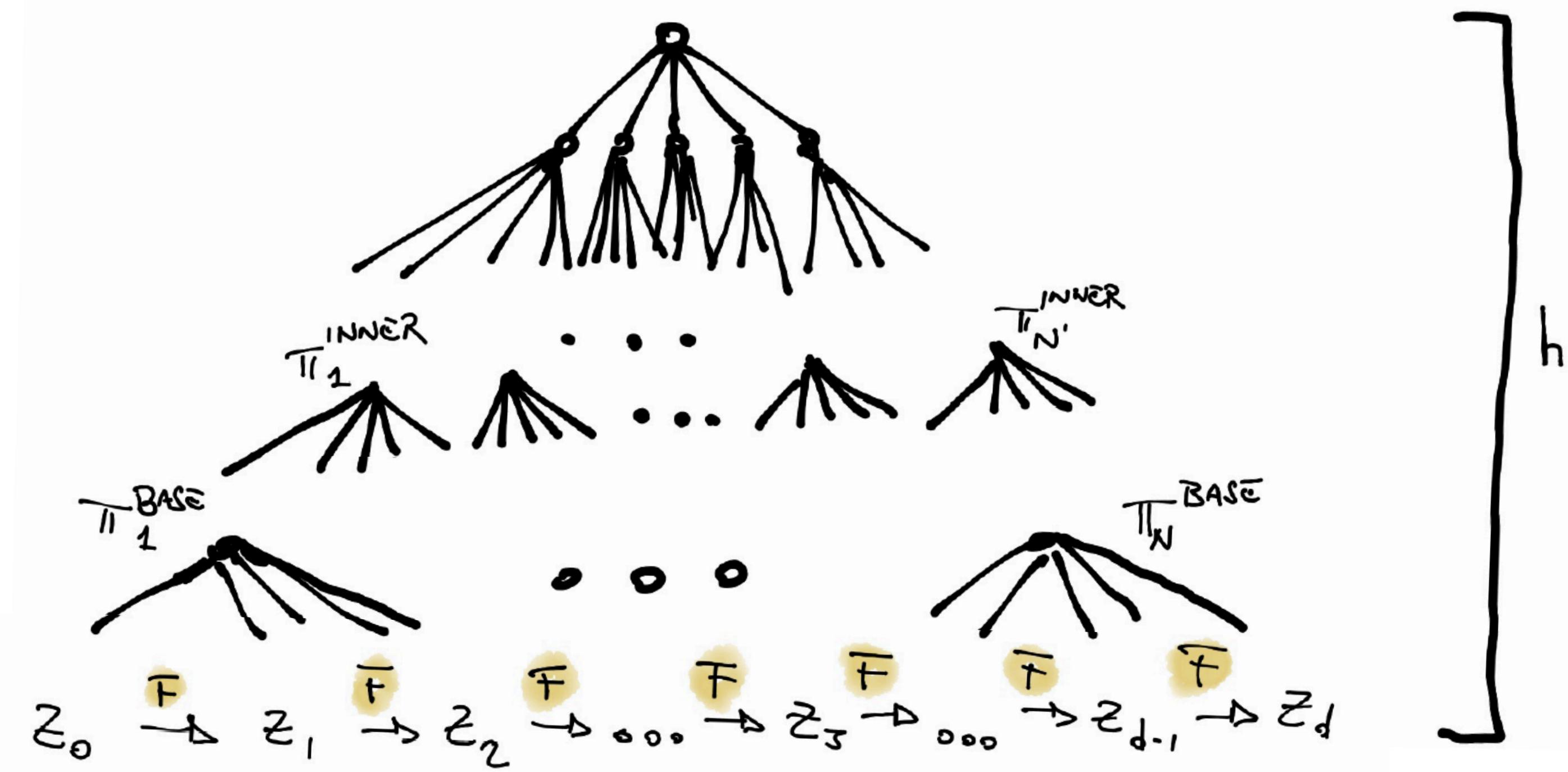
Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.



The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

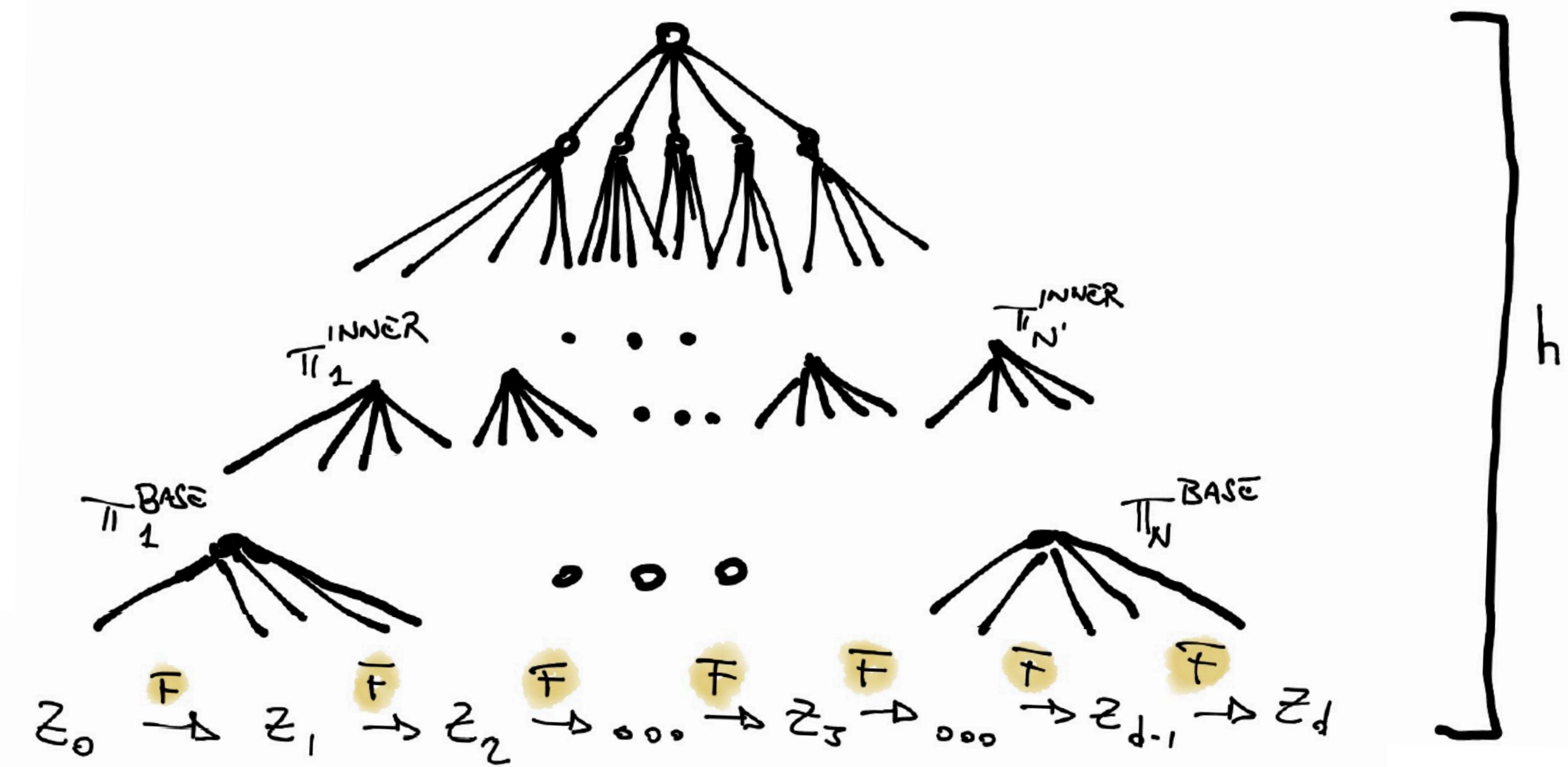
Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.



We extract h times. We want h to be $O(1)$

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

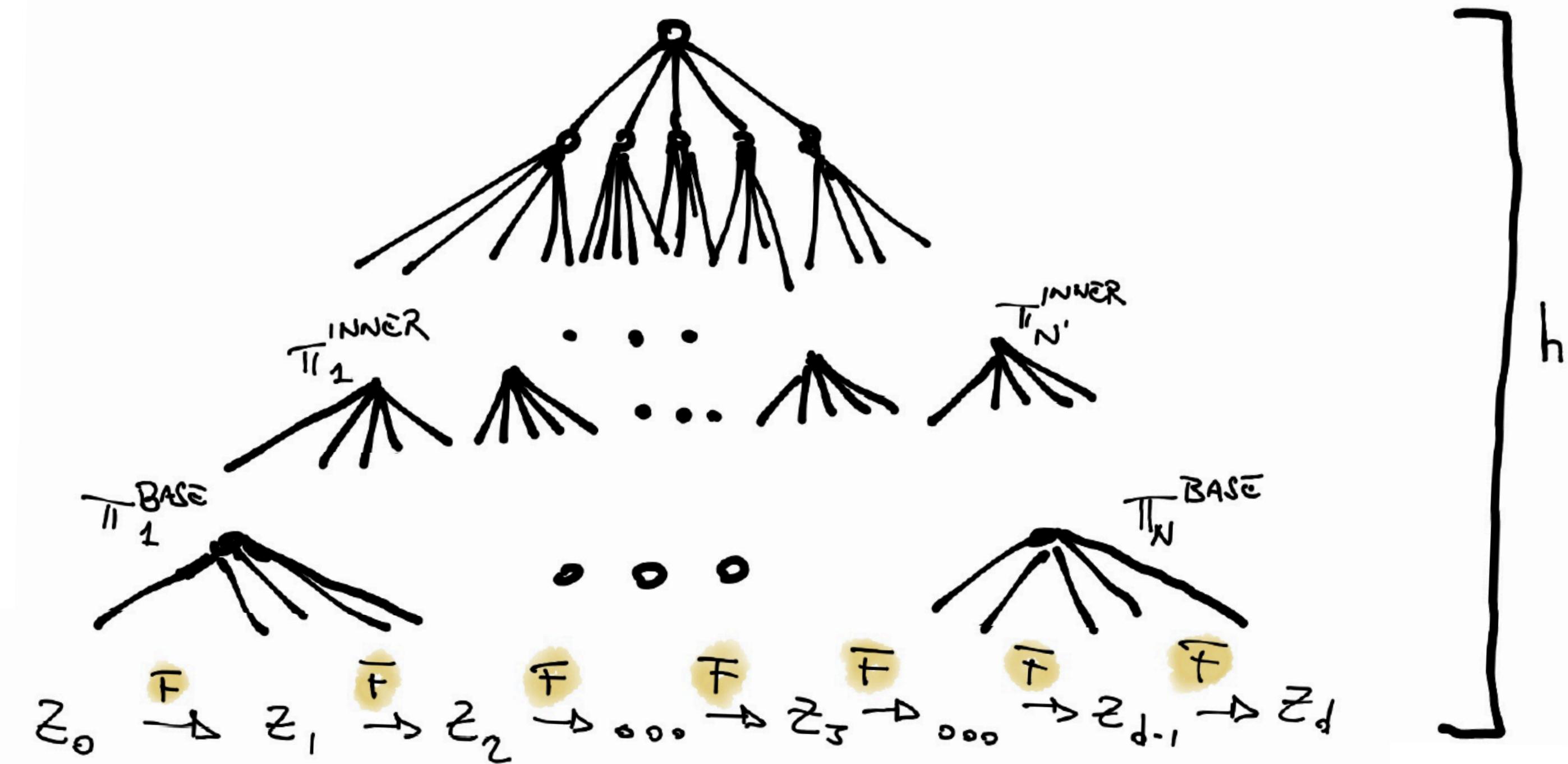
Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.



We extract h times. We want h to be $O(1)$
For that, choose branching factor $O(\lambda)$.

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky*
nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti*
canetti@tau.ac.il
Boston University and
Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu
MIT

Eran Tromer†
tromer@tau.ac.il
Tel Aviv University

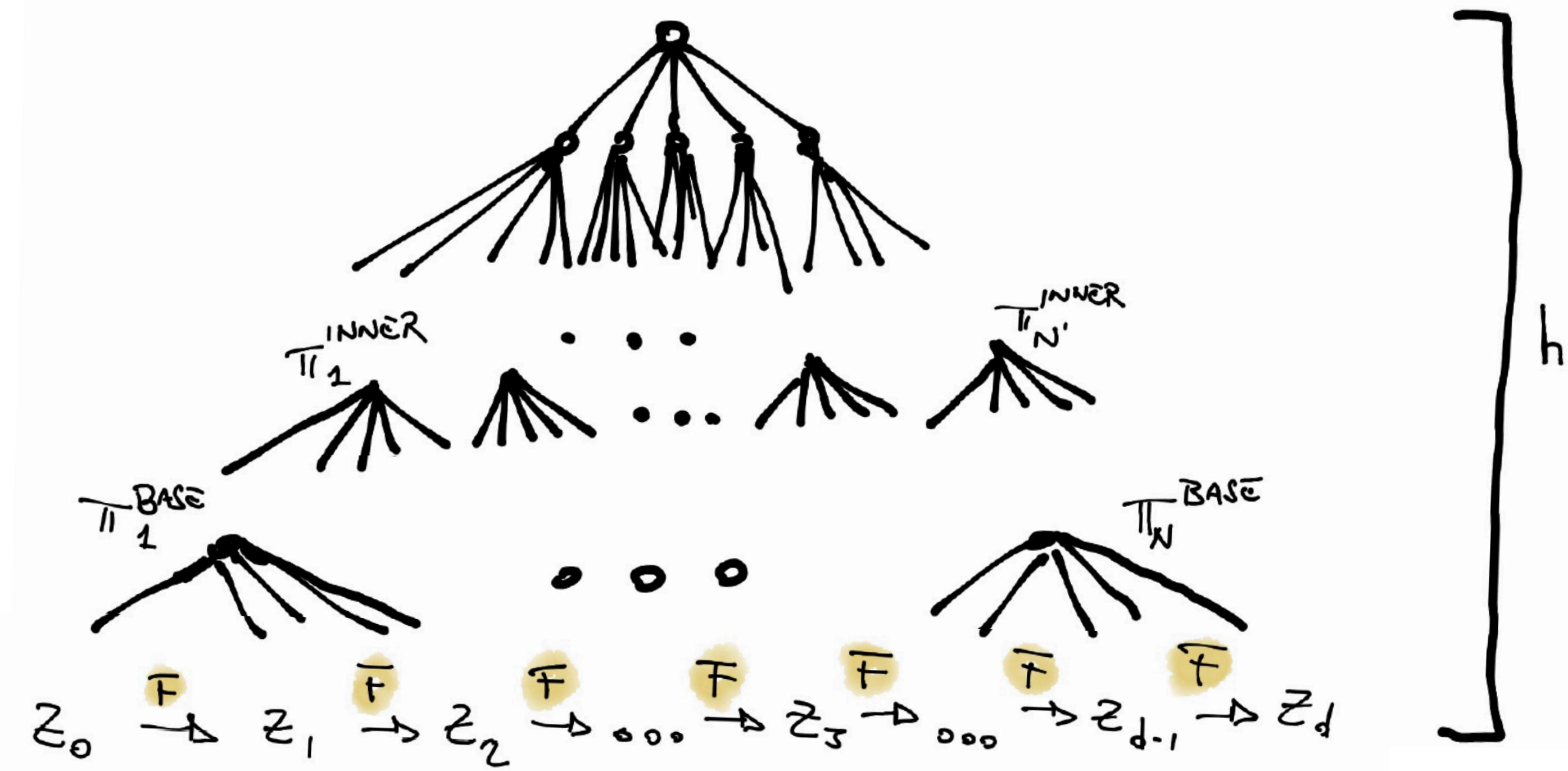
December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.

This construction works but it is not the
plain recursive construction from before anymore.



We extract h times. We want h to be $O(1)$
For that, choose branching factor $O(\lambda)$.

Why Does Security Beyond $O(1)$ Depth Matters?

A digression on motivation

Why Does Security Beyond $O(1)$ Depth Matters?

A digression on motivation

- Cryptographic settings

Why Does Security Beyond $O(1)$ Depth Matters?

A digression on motivation

- Cryptographic settings
 - VDFs

Why Does Security Beyond $O(1)$ Depth Matters?

A digression on motivation

- Cryptographic settings
 - VDFs
 - requires $\omega(1)$ iterations

Why Does Security Beyond $O(1)$ Depth Matters?

A digression on motivation

- Cryptographic settings
 - VDFs
 - requires $\omega(1)$ iterations
 - Hashing and other symmetric key primitives

Why Does Security Beyond $O(1)$ Depth Matters?

A digression on motivation

- Cryptographic settings
 - VDFs
 - requires $\omega(1)$ iterations
 - Hashing and other symmetric key primitives
 - round functions require $\approx \lambda$ iterations

Why Does Security Beyond $O(1)$ Depth Matters?

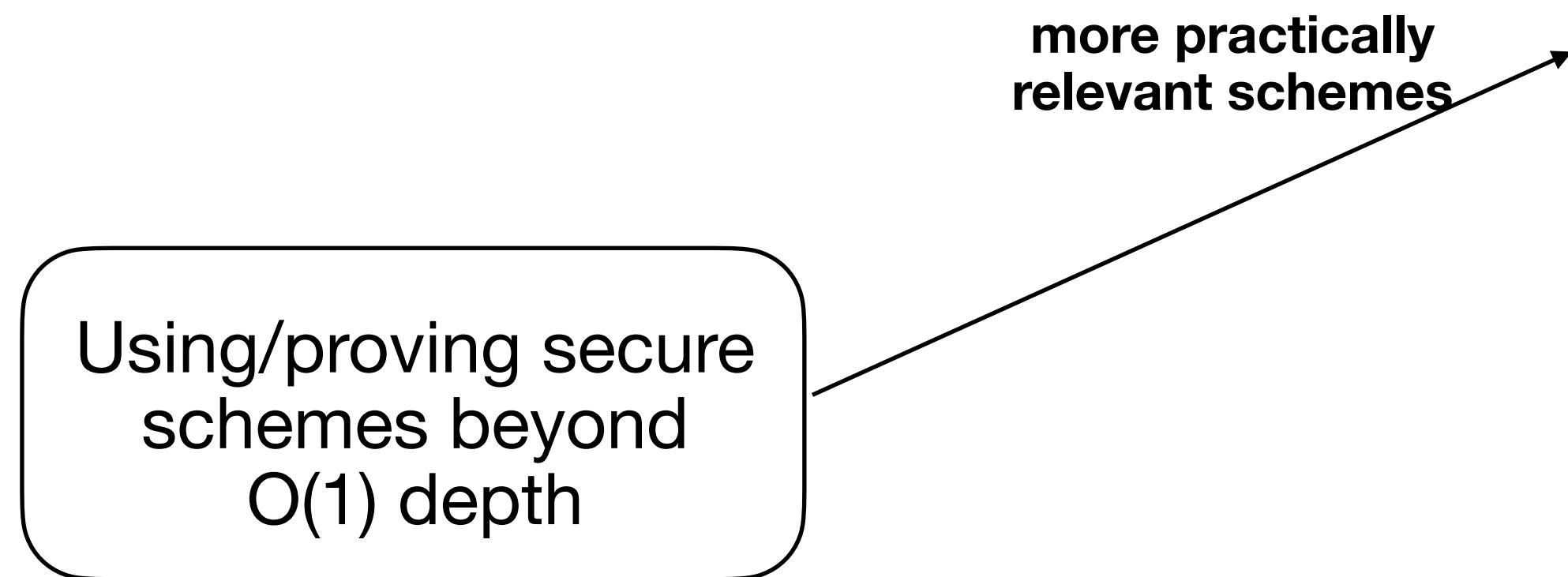
A digression on motivation

- Cryptographic settings
 - VDFs
 - requires $\omega(1)$ iterations
 - Hashing and other symmetric key primitives
 - round functions require $\approx \lambda$ iterations
 - General improved understanding of *where* we can use *which* constructions

How the Community Has Addressed This—A Landscape

Using/proving secure
schemes beyond
 $O(1)$ depth

How the Community Has Addressed This—A Landscape

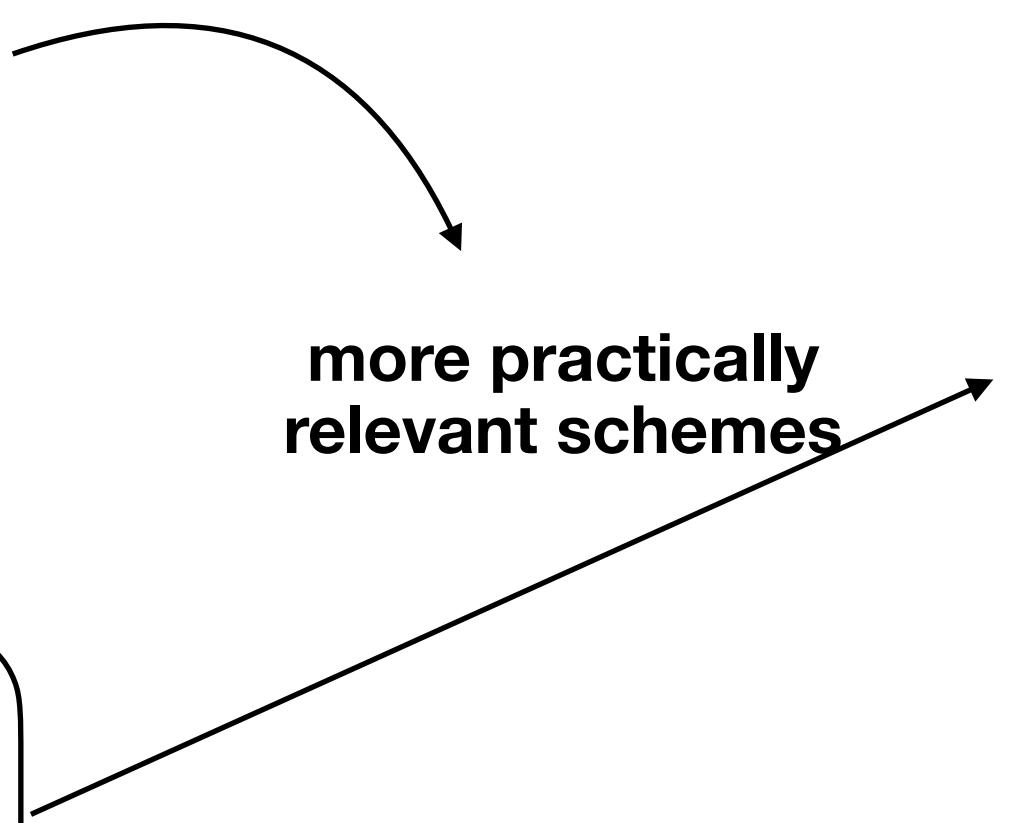


How the Community Has Addressed This—A Landscape

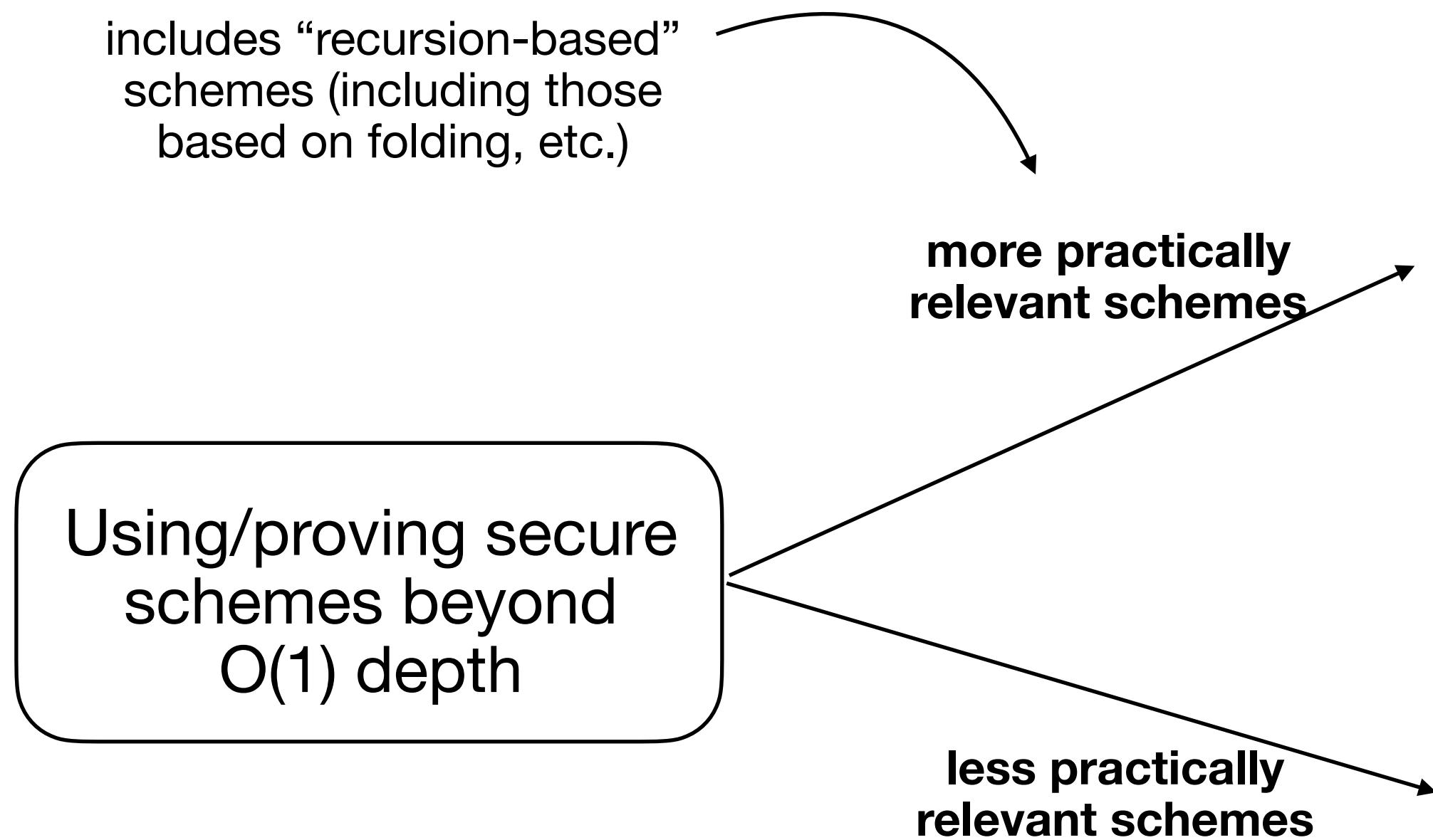
includes “recursion-based”
schemes (including those
based on folding, etc.)

more practically
relevant schemes

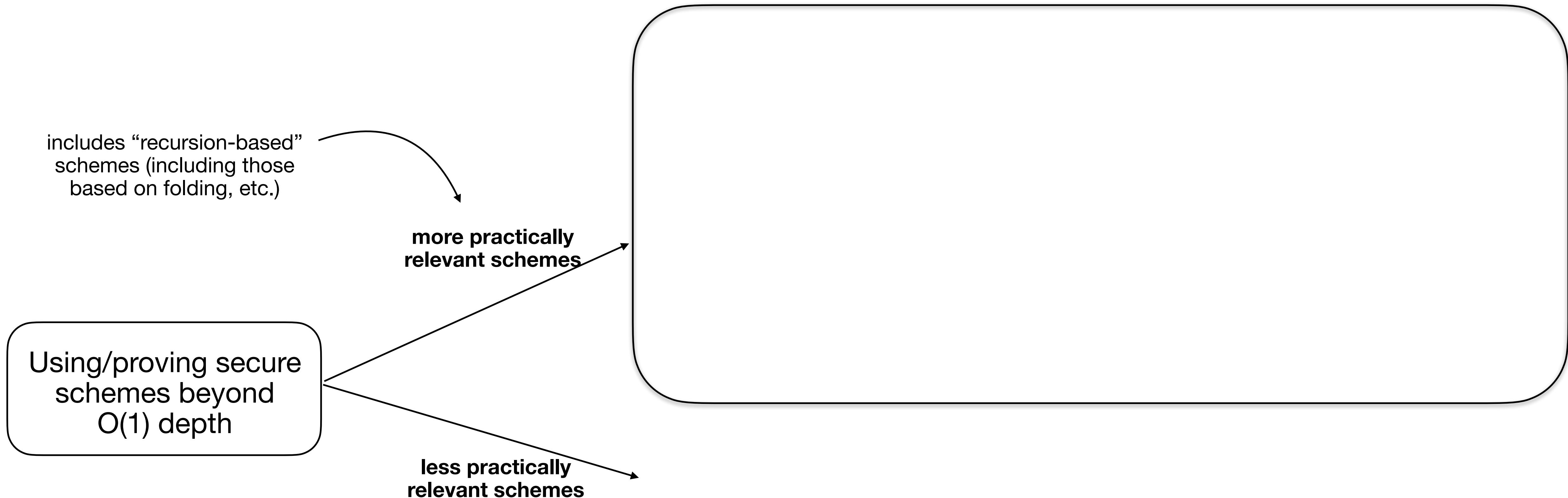
Using/proving secure
schemes beyond
 $O(1)$ depth



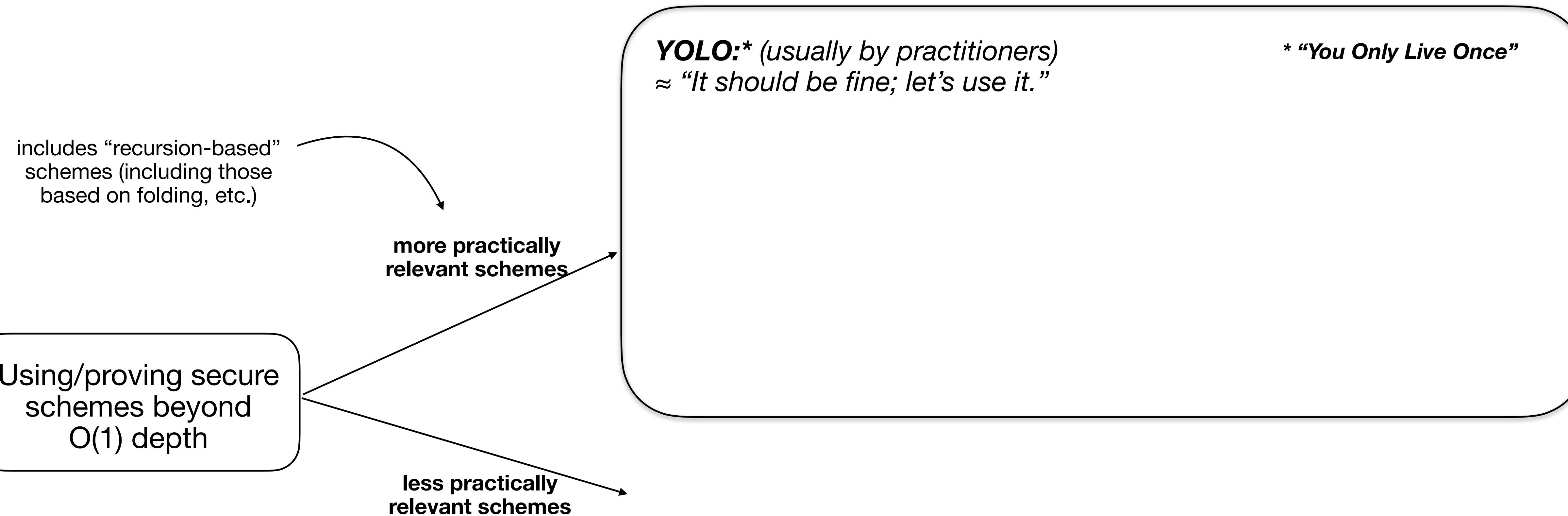
How the Community Has Addressed This—A Landscape



How the Community Has Addressed This—A Landscape



How the Community Has Addressed This—A Landscape



How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

more practically relevant schemes

Using/proving secure schemes beyond $O(1)$ depth

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr¹, Jesper Buus Nielsen³, Christoph Striecks¹, and Daniele Venturi¹

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

more practically relevant schemes

Using/proving secure schemes beyond $O(1)$ depth

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

more practically relevant schemes

Using/proving secure schemes beyond $O(1)$ depth

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound \mathcal{D} polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

Security Bounds for Proof-Carrying Data from Straightline Extractors

Alessandro Chiesa
alessandro.chiesa@epfl.ch
EPFL

Ziyi Guan
ziyi.guan@epfl.ch
EPFL

Shahar Samocha
shahars@starkware.co
StarkWare

Eylon Yogev
eylon.yogev@biu.ac.il
Bar-Ilan University

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

Security Bounds for Proof-Carrying Data from Straightline Extractors

Alessandro Chiesa alessandro.chiesa@epfl.ch EPFL	Ziyi Guan ziyi.guan@epfl.ch EPFL
Shahar Samocha	Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs Applications to Unbounded-Depth IVC and More*

Matteo Campanelli¹, Dario Fiore², and Mahak Pancholi²

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Security Bounds for Proof-Carrying Data from Straightline Extractors

Alessandro Chiesa alessandro.chiesa@epfl.ch EPFL	Ziyi Guan ziyi.guan@epfl.ch EPFL
Shahar Samocha	Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs Applications to Unbounded-Depth IVC and More*

Matteo Campanelli¹, Dario Fiore², and Mahak Pancholi²

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”

[Mangrove (CRYPTO24),...]

Security Bounds for Proof-Carrying Data from Straightline Extractors

Alessandro Chiesa alessandro.chiesa@epfl.ch EPFL	Ziyi Guan ziyi.guan@epfl.ch EPFL
Shahar Samocha	Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs Applications to Unbounded-Depth IVC and More*

Matteo Campanelli¹, Dario Fiore², and Mahak Pancholi²

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

Security Bounds for Proof-Carrying Data from Straightline Extractors

Alessandro Chiesa
alessandro.chiesa@epfl.ch
EPFL
Ziyi Guan
ziyi.guan@epfl.ch
EPFL
Shahar Samocha
Eylon Yosef

On Composing AGM-Secure Functionalities with Cryptographic Proofs Applications to Unbounded-Depth IVC and More*

Matteo Campanelli¹, Dario Fiore², and Mahak Pancholi²

Soundness for deterministic F from batch arguments

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP and Applications *

Lalita Devadas
MIT Rishab Goyal
University of Wisconsin-Madison Yael Kalai
Vinod Vaikuntanathan
MIT

Alessandro Chiesa alessandro.chiesa@epfl.ch EPFL	Ziyi Guan ziyi.guan@epfl.ch EPFL
Shahar Samocha	Eylon Yogev

On Composing AGM-Secure Functionality with Cryptographic Proofs
Applications to Unbounded-Depth IVC and More*

Matteo Campanelli¹, Dario Fiore², and Mahak Pancholi²

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP and Applications *

Lalita Devadas
MIT Rishab Goyal
University of Wisconsin-Madison Yael Kalai
Vinod Vaikuntanathan
MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Omer Paneth^{*1} and Rafael Pass^{†1,2}

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP and Applications *

Lalita Devadas
MIT Rishab Goyal
University of Wisconsin-Madison Yael Kalai
Vinod Vaikuntanathan
MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Omer Paneth^{*1} and Rafael Pass[†]

Verifiable Streaming Computation and Step-by-Step Zero-Knowledge

Abtin Afshar, Rishab Goyal*

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound \mathcal{D} polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP and Applications *

Lalita Devadas
MIT Rishab Goyal
University of Wisconsin-Madison Yael Kalai
Vinod Vaikuntanathan
MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Omer Paneth^{*1} and Rafael Pass[†]

Verifiable Streaming Computation and Step-by-Step Zero-Knowledge

Abtin Afshar, Rishab Goyal*

Soundness for non-deterministic computations

Incrementally Verifiable Computation for NP from Standard Assumptions

Pratish Datta [*] NTT Research	Abhishek Jain [†] NTT Research and JHU	Zhengzhong Jin [‡] Northeastern
Alexis Korb [§] UCLA	Surya Mathialagan [¶] MIT	Amit Sahai UCLA

How the Community Has Addressed This—A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

Limitations

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP and Applications *

Lalita Devadas
MIT Rishab Goyal
University of Wisconsin-Madison Yael Kalai
Vinod Vaikuntanathan
MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Omer Paneth^{*1} and Rafael Pass[†]

Verifiable Streaming Computation and Step-by-Step Zero-Knowledge

Abtin Afshar, Rishab Goyal*

Incrementally Verifiable Computation for NP from Standard Assumptions		
Pratish Datta [*] NTT Research	Abhishek Jain [†] NTT Research and JHU	Zhengzhong Jin [‡] Northeastern
Alexis Korb [§] UCLA	Surya Mathialagan [¶] MIT	Amit Sahai UCLA

Soundness for non-deterministic computations

How the Community Has Addressed This – A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

Limitations

Often it might not be warranted.

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

* “You Only Live Once”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound \mathcal{D} polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Security Bounds for Proof-Carrying Data from Straightline Extractors

On Composing AGM-Secure Functionality with Cryptographic Proofs Applications to Unbounded-Depth IVC and More*

Matteo Campanelli¹, Dario Fiore², and Mahak Pancholi²

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP and Applications *

Lalita Devadas
MIT
Rishab Goyal
University of Wisconsin-Madison
Vinod Vaikuntanathan
MIT
Yael Kalai
Microsoft Research and M

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Omer Paneth^{*1} and Rafael Pass[†]

Verifiable Streaming Computation and Step-by-Step Zero-Knowledge

Abtin Afshar, Rishab Goyal*

Soundness for non-deterministic computations

Incrementally Verifiable Computation for NP from Standard Assumptions

Pratish Datta*
NTT Research
Abhishek Jain[†]
NTT Research and JHU
Zhengzhong Jin[‡]
Northeastern
Alexis Korb[§]
UCLA
Surya Mathialagan[¶]
MIT
Amit Sahai^{||}
UCLA

How the Community Has Addressed This – A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

more practically relevant schemes

less practically relevant schemes

Limitations

Often it might not be warranted.

Modifies schemes (or applicable only at times)

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP and Applications *

Lalita Devadas
MIT Rishab Goyal
University of Wisconsin-Madison Yael Kalai
Vinod Vaikuntanathan
MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Omer Paneth^{*1} and Rafael Pass[†]

Verifiable Streaming Computation and Step-by-Step Zero-Knowledge

Abtin Afshar, Rishab Goyal*

Soundness for non-deterministic computations

Incrementally Verifiable Computation for NP from Standard Assumptions

Pratish Datta [*] NTT Research	Abhishek Jain [†] NTT Research and JHU	Zhengzhong Jin [‡] Northeastern
Alexis Korb [§] UCLA	Surya Mathialagan [¶] MIT	Amit Sahai UCLA

* “You Only Live Once”

How the Community Has Addressed This – A Landscape

includes “recursion-based” schemes (including those based on folding, etc.)

Using/proving secure schemes beyond $O(1)$ depth

Limitations

Often it might not be warranted.

Modifies schemes (or applicable only at times)

More complex, more inefficient

more practically relevant schemes

less practically relevant schemes

YOLO:* (usually by practitioners)
≈ “It should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

Malleable SNARKs and Their Applications

Suvradip Chakraborty¹, Dennis Hofheinz², Roman Langrehr³, Jesper Buus Nielsen³, Christoph Striecks⁴, and Daniele Venturi⁵

extractors run in polynomial time. If we want to allow any bound D polynomial in the security parameter, we have to assume fast extraction (meaning that the extractor for an adversary running in time t takes only time $t + \text{poly}(\lambda)$ for a polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP and Applications *

Lalita Devadas
MIT
Rishab Goyal
University of Wisconsin-Madison
Vinod Vaikuntanathan
MIT
Yael Kalai
Microsoft Research and M

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Omer Paneth^{*1} and Rafael Pass[†]

Verifiable Streaming Computation and Step-by-Step Zero-Knowledge
Alen Afshar, Rishab Goyal*

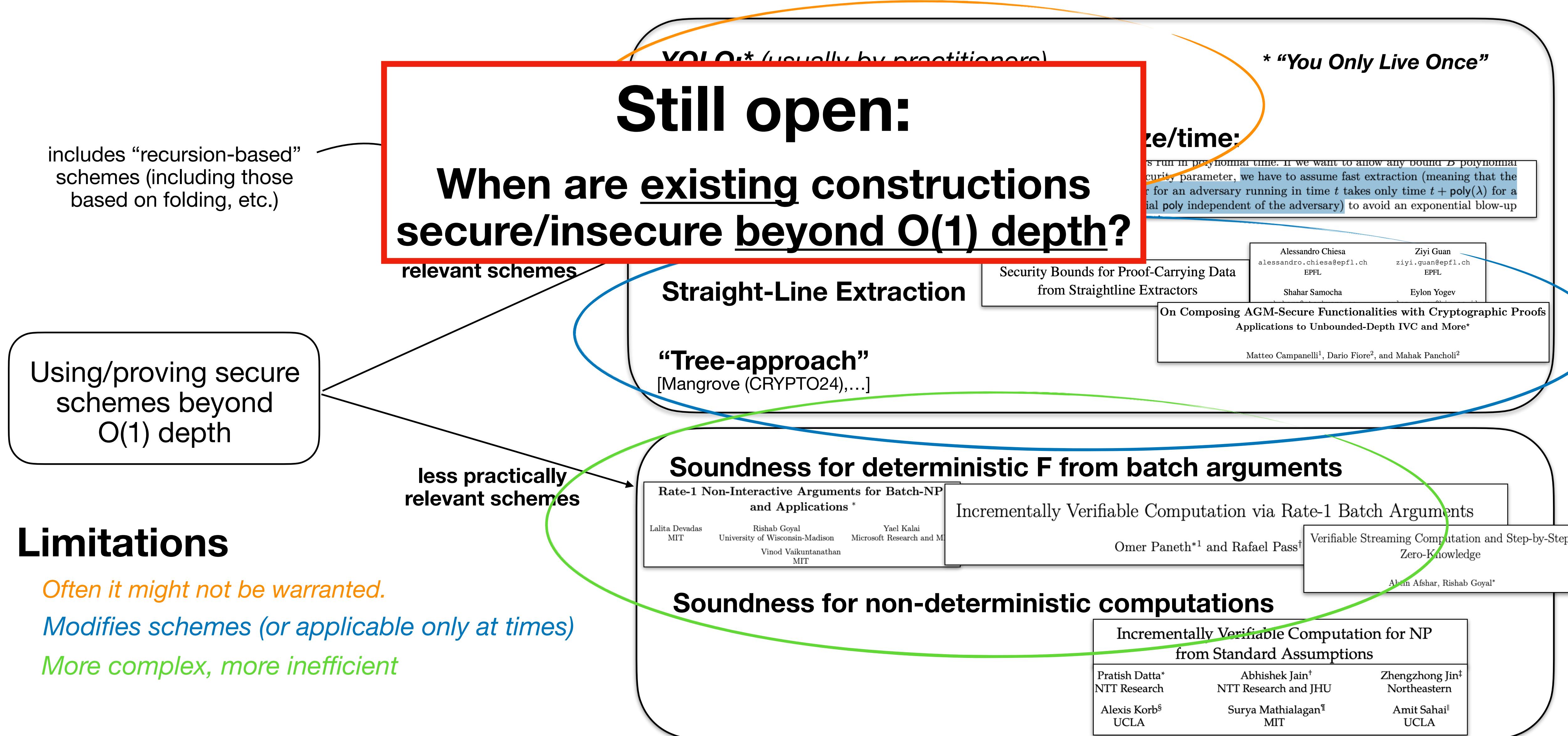
Soundness for non-deterministic computations

Incrementally Verifiable Computation for NP from Standard Assumptions

Pratish Datta* NTT Research	Abhishek Jain [†] NTT Research and JHU	Zhengzhong Jin [‡] Northeastern
Alexis Korb [§] UCLA	Surya Mathialagan [¶] MIT	Amit Sahai UCLA

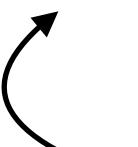
* “You Only Live Once”

How the Community Has Addressed This – A Landscape



This Work's Question

Still open:
When are existing constructions
secure/insecure beyond $O(1)$ depth?



The problem at hand

This Work's Question

Still open:

When are existing constructions
secure/insecure beyond O(1) depth?

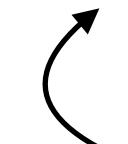
The problem at hand

When is any construction secure/insecure
beyond O(1) depth?

This Work's Question

Still open:

When are existing constructions
secure/insecure beyond O(1) depth?



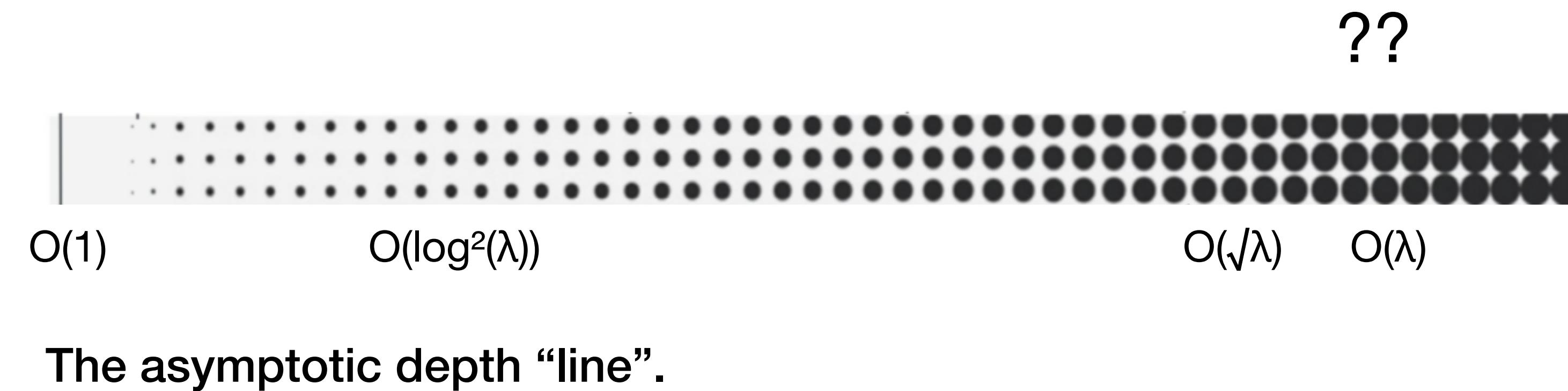
The problem at hand

**When is any construction secure/insecure
beyond O(1) depth?**

We approach this question through two main conceptual lenses.

Lens 1: “*Depth*” as a Core Object of Study

Lens 1: “*Depth*” as a Core Object of Study



Lens 1: “*Depth*” as a Core Object of Study

The asymptotic depth “line”.

Lens 1: “*Depth*” as a Core Object of Study

The asymptotic depth “line”.

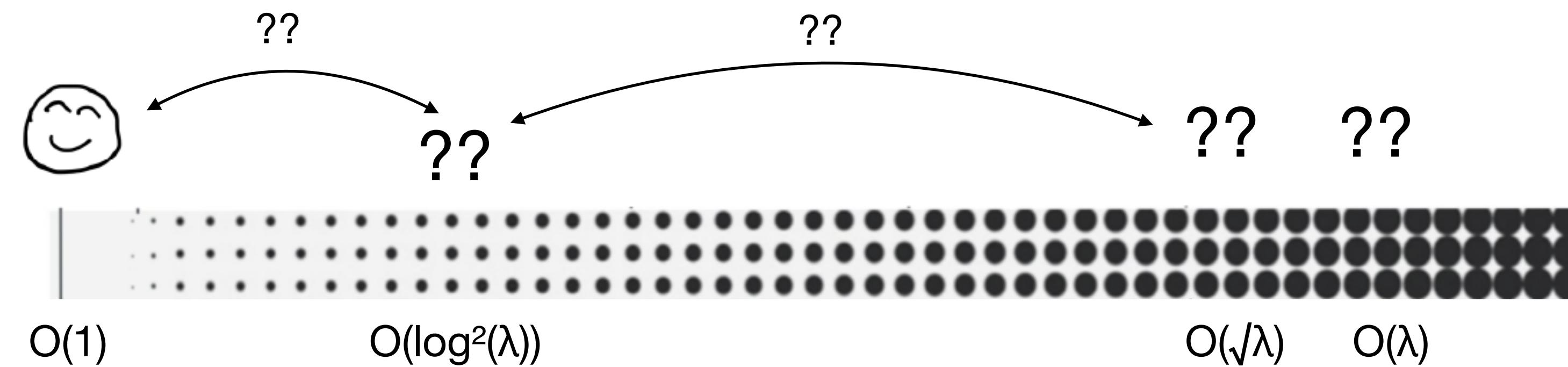
Lens 1: “*Depth*” as a Core Object of Study

The asymptotic depth “line”.

Lens 1: “*Depth*” as a Core Object of Study

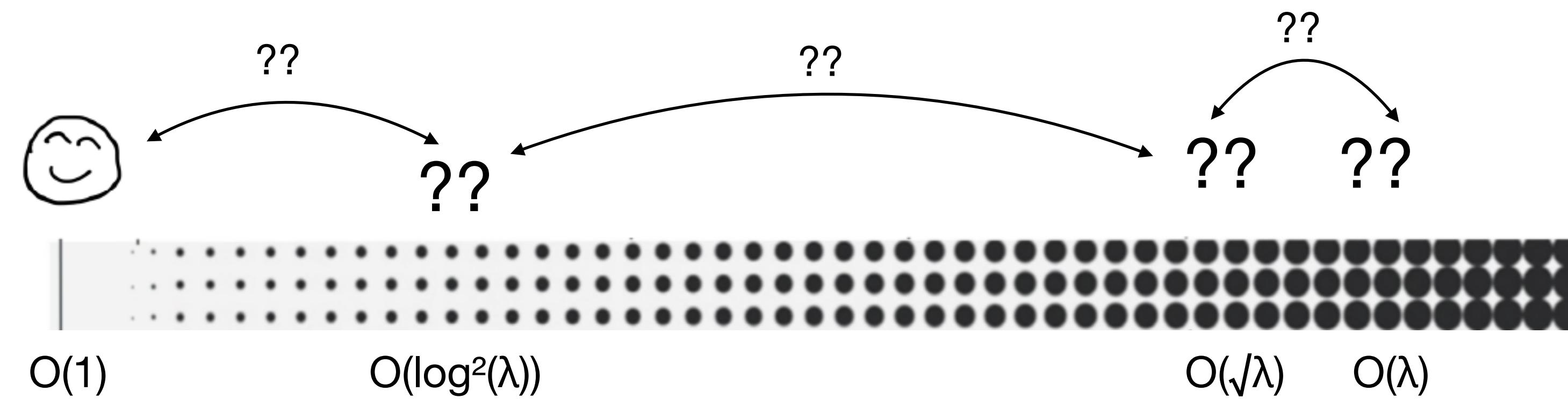
The asymptotic depth “line”.

Lens 1: “*Depth*” as a Core Object of Study



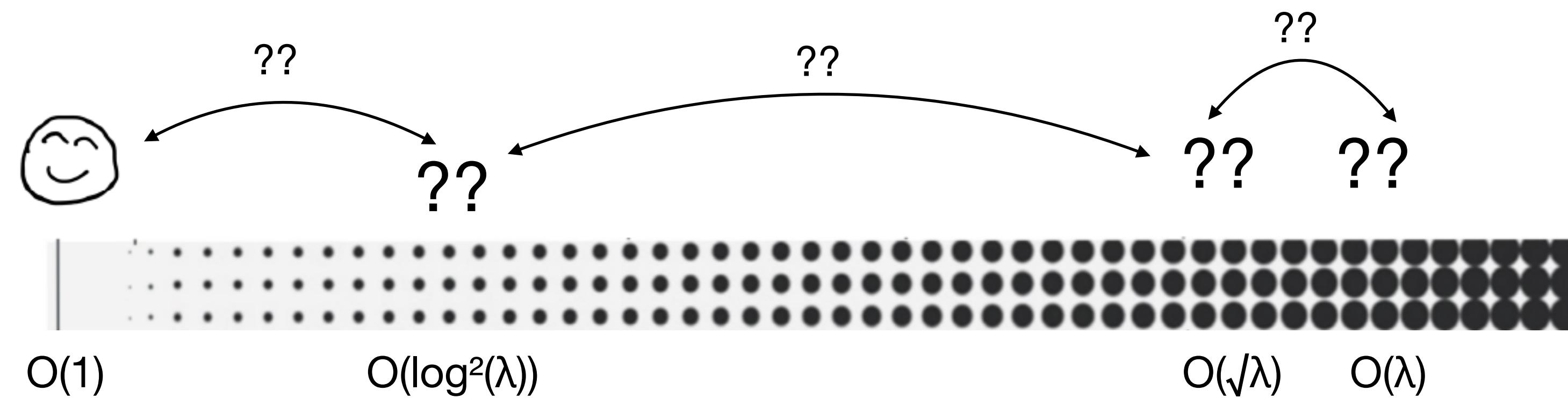
The asymptotic depth “line”.

Lens 1: “*Depth*” as a Core Object of Study



The asymptotic depth “line”.

Lens 1: “*Depth*” as a Core Object of Study



The asymptotic depth “line”.

A note on abuse of language:
I will say
“big/bigger” to mean “fast/er growing”;
“small/smaller” to mean “slow/er growing”

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] \leftrightarrow [depth])

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] \leftrightarrow [depth])

- The proof strategy that usually fails:

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation $[\text{adversarial advantage}] \leftrightarrow [\text{depth}]$)

- The proof strategy that usually fails:
 - In order to show extractability, **show** an extractor that succeeds **in polynomial time**.

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] \leftrightarrow [depth])

- The proof strategy that usually fails:
 - In order to show extractability, **show** an extractor that succeeds **in polynomial time**.
 - *Constructing* such a machine is hard.

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation $[\text{adversarial advantage}] \leftrightarrow [\text{depth}]$)

- The proof strategy that usually fails:
 - In order to show extractability, **show** an extractor that succeeds **in polynomial time**.
- *Constructing* such a machine is hard.
- \Rightarrow We *mostly* look for techniques that avoid extractability and look at the advantage of the adversary in:

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] \leftrightarrow [depth])

- The proof strategy that usually fails:
 - In order to show extractability, **show** an extractor that succeeds **in polynomial time**.
- *Constructing* such a machine is hard.
- \Rightarrow We *mostly* look for techniques that avoid extractability and look at the advantage of the adversary in:
 - soundness for deterministic computations (Adv. succeeds $\Rightarrow z_d = \underbrace{F(F(\dots F(F(z_0))\dots))}_{d \text{ times}}$)

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] \leftrightarrow [depth])

- The proof strategy that usually fails:
 - In order to show extractability, **show** an extractor that succeeds **in polynomial time**.
- *Constructing* such a machine is hard.
- \Rightarrow We *mostly* look for techniques that avoid extractability and look at the advantage of the adversary in:
 - soundness for deterministic computations (Adv. succeeds $\Rightarrow z_d = \underbrace{F(F(\dots F(F(z_0))\dots))}_{d \text{ times}}$)
 - soundness for non-deterministic computations
(Adv. succeeds $\Rightarrow \exists w_0, \dots, w_{d-1} : z_d = \underbrace{F(F(\dots F(F(z_0, w_0))\dots), w_{d-1})}_{d \text{ times}}$)

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] \leftrightarrow [depth])

- The proof strategy that usually fails:
 - In order to show extractability, **show** an extractor that succeeds **in polynomial time**.
- *Constructing* such a machine is hard.
- \Rightarrow We *mostly* look for techniques that avoid extractability and look at the advantage of the adversary in:
 - soundness for deterministic computations (Adv. succeeds $\Rightarrow z_d = \underbrace{F(F(\dots F(F(z_0))\dots))}_{d \text{ times}}$)
 - soundness for non-deterministic computations
(Adv. succeeds $\Rightarrow \exists w_0, \dots, w_{d-1} : z_d = \underbrace{F(F(\dots F(F(z_0, w_0))\dots), w_{d-1})}_{d \text{ times}}$)
 - another notion of (non-extractable) soundness that we introduce, but that is more expressive than the above.

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] \leftrightarrow [depth])

- The proof strategy that usually fails:
 - In order to show extractability, **show** an extractor that succeeds **in polynomial time**.
- *Constructing* such a machine is hard.
- \Rightarrow We *mostly* look for techniques that avoid extractability and look at the advantage of the adversary in:
 - soundness for deterministic computations (Adv. succeeds $\Rightarrow z_d = \underbrace{F(F(\dots F(F(z_0))\dots))}_{d \text{ times}}$)
 - soundness for non-deterministic computations
(Adv. succeeds $\Rightarrow \exists w_0, \dots, w_{d-1} : z_d = \underbrace{F(F(\dots F(F(z_0, w_0))\dots), w_{d-1})}_{d \text{ times}}$)
 - another notion of (non-extractable) soundness that we introduce, but that is more expressive than the above.
 - \approx incremental analogue of functional commitments

Our Results

Our Results

Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

Our Results

Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

“weak insecurity” at big depths \Rightarrow security at smaller depths.

Our Results

Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

“weak insecurity” at big depths \Rightarrow security at smaller depths.

Our Results

Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

“weak insecurity” at big depths \Rightarrow security at smaller depths.

Our Results

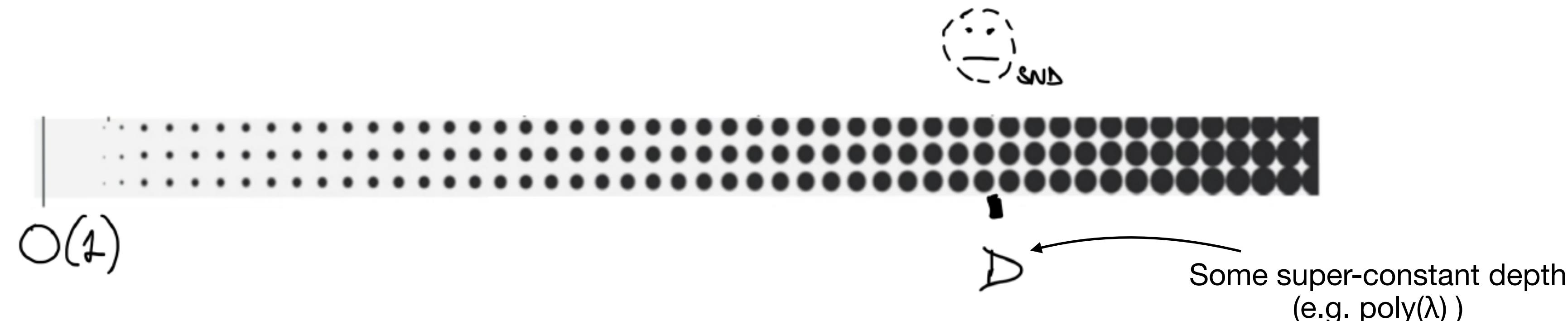
Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

“weak insecurity” at big depths \Rightarrow security at smaller depths.



Our Results

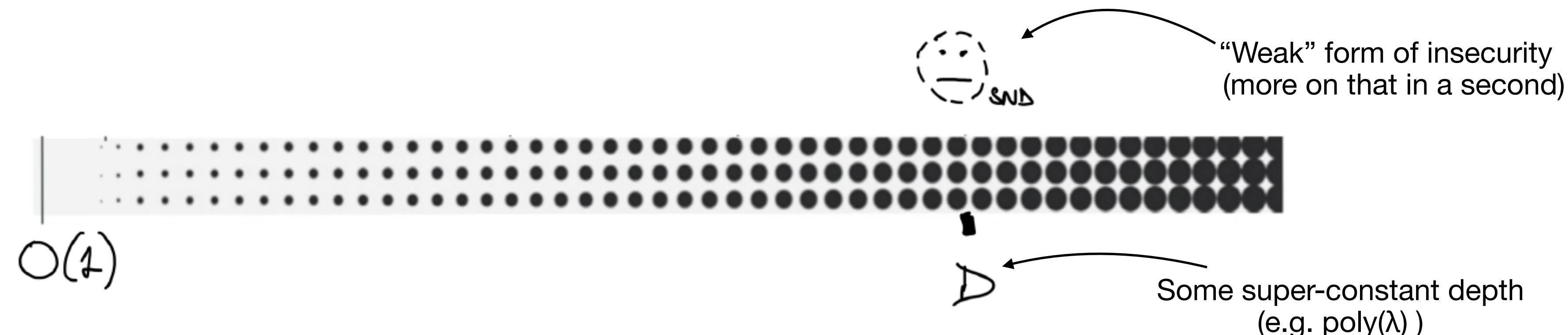
Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

“weak insecurity” at big depths \Rightarrow security at smaller depths.



Our Results

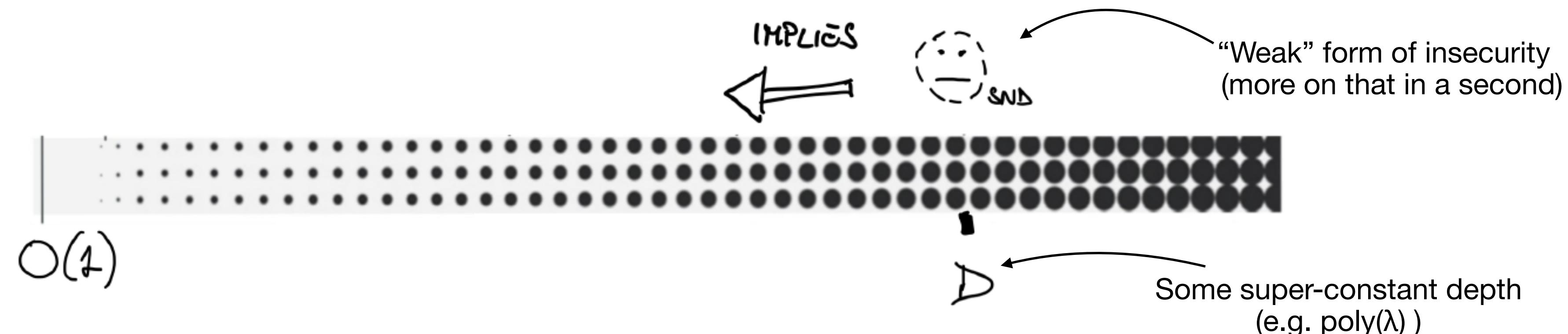
Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

“weak insecurity” at big depths \Rightarrow security at smaller depths.



Our Results

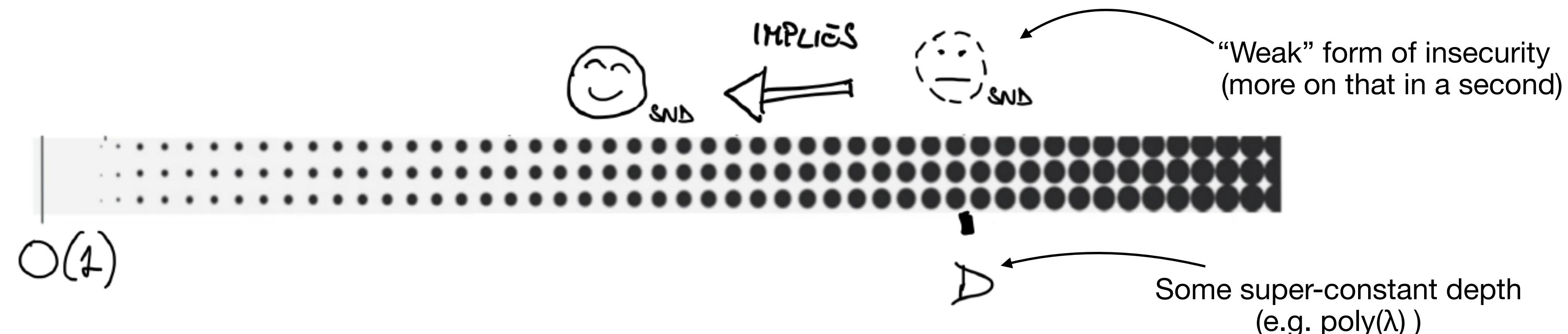
Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

“weak insecurity” at big depths \Rightarrow security at smaller depths.



Our Results

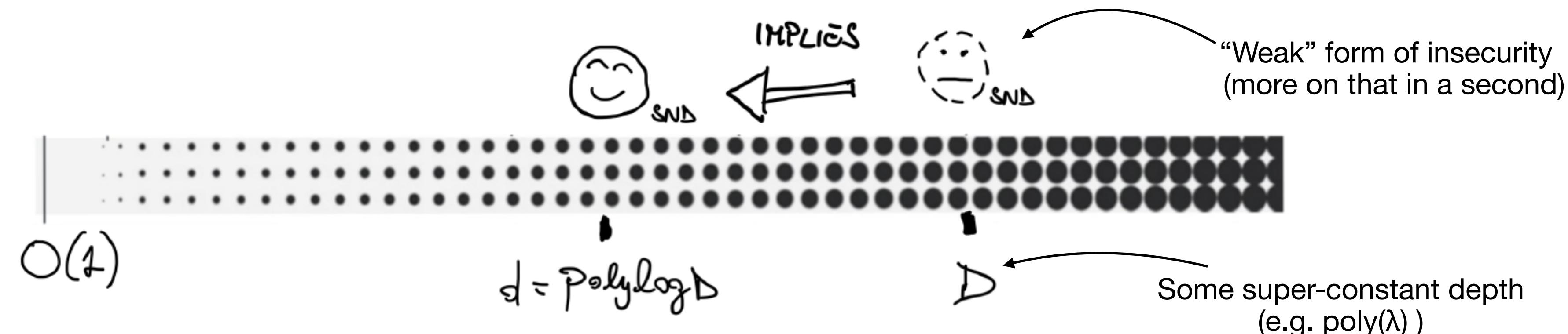
Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

“weak insecurity” at big depths \Rightarrow security at smaller depths.



Our Results

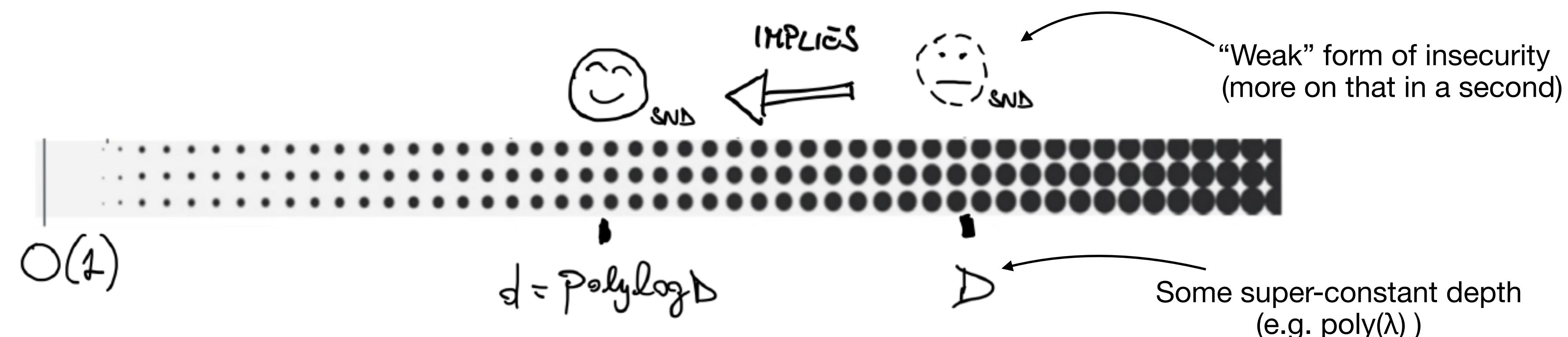
Our goals (distilled):

- finding **tools to prove security/insecurity** of any construction (including efficient existing ones).
- **studying IVC depth and its relation to security** as a subject in its own right.

First result*:

* NB: in the eprint, the results are presented in a different order.

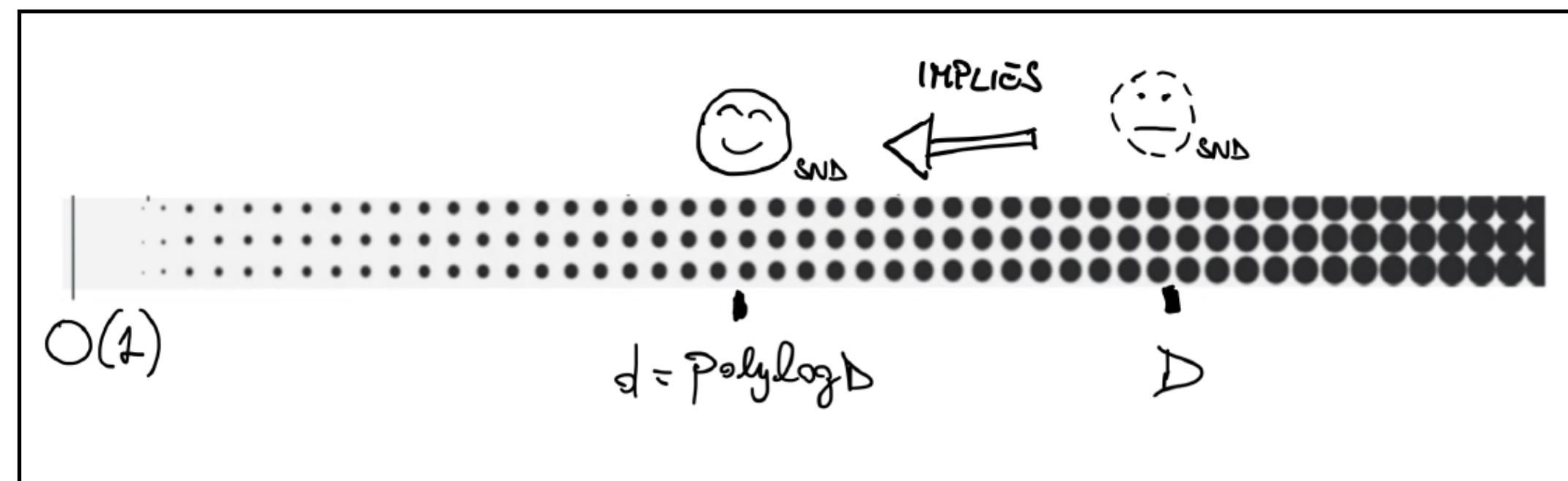
“weak insecurity” at big depths \Rightarrow security at smaller depths.



Implication:

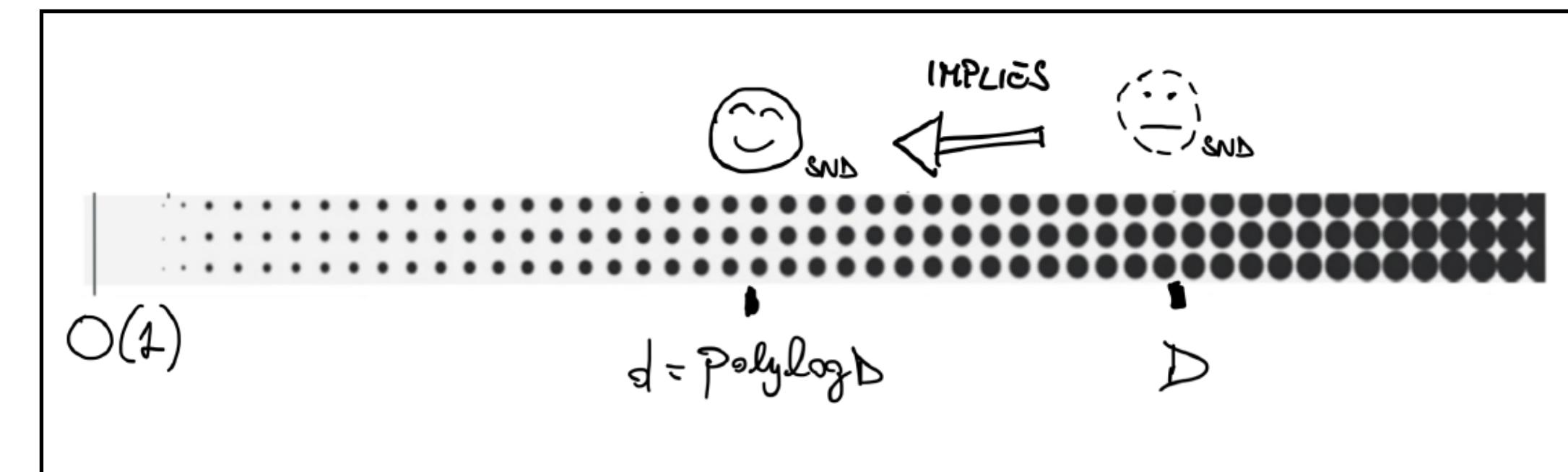
to prove security at some $\omega(1)$ depth d ,
show some $\omega(1)$ depth D where this weak property holds.

What Do We Mean by “Weak” Insecurity?



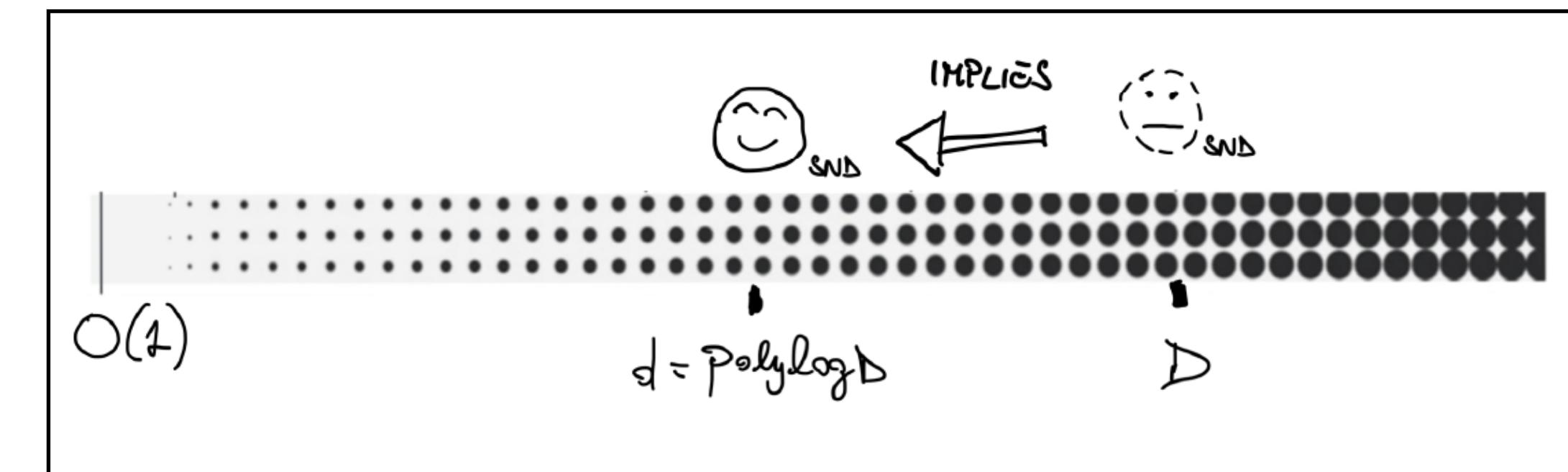
What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)



What Do We Mean by “Weak” Insecurity?

:= *infinitely-often* soundness (io-SND)

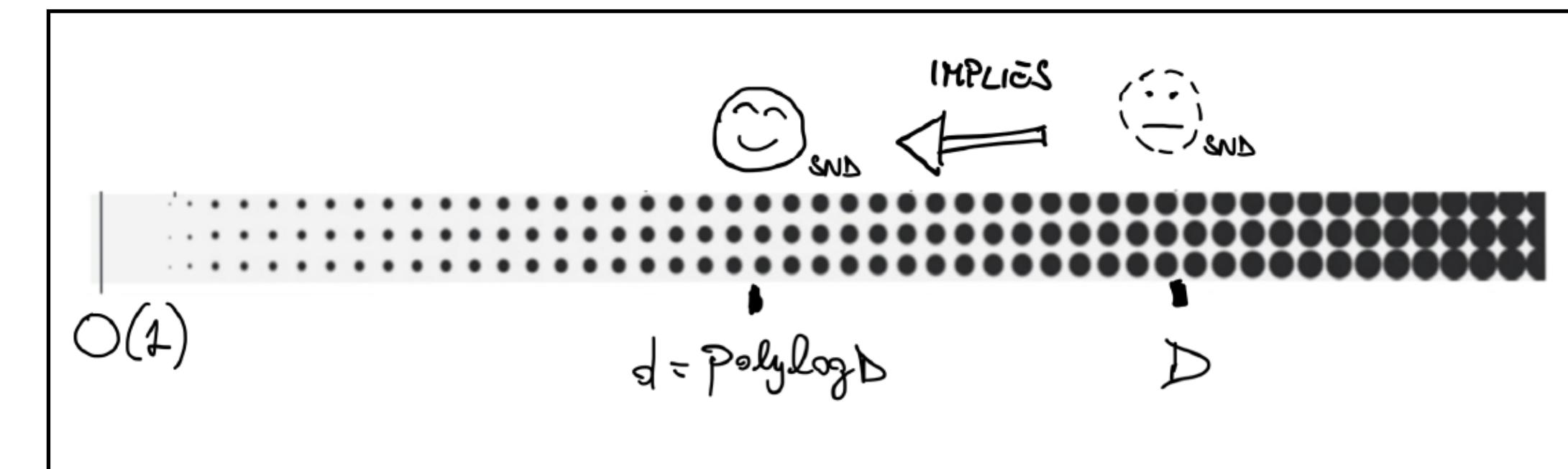


Traditional “almost-everywhere” soundness (ae-SND):

$$\forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in \mathbb{N}$$

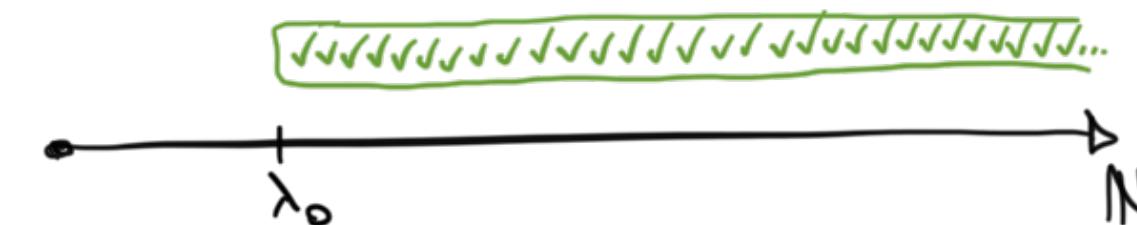
What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)



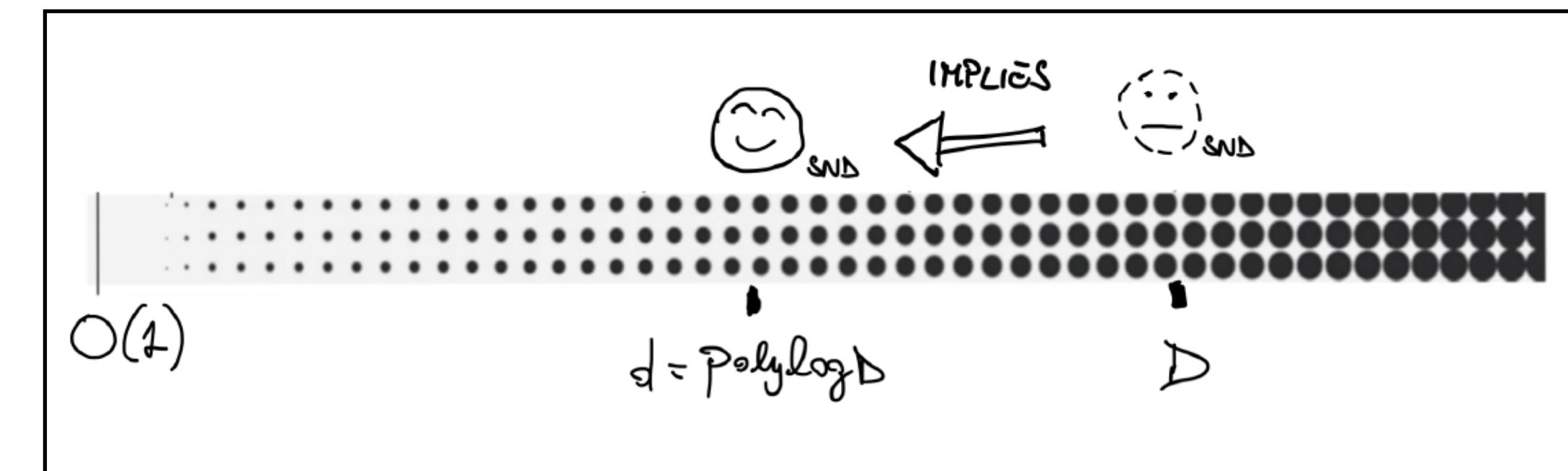
Traditional “almost-everywhere” soundness (ae-SND):

$$\forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in \mathbb{N}$$



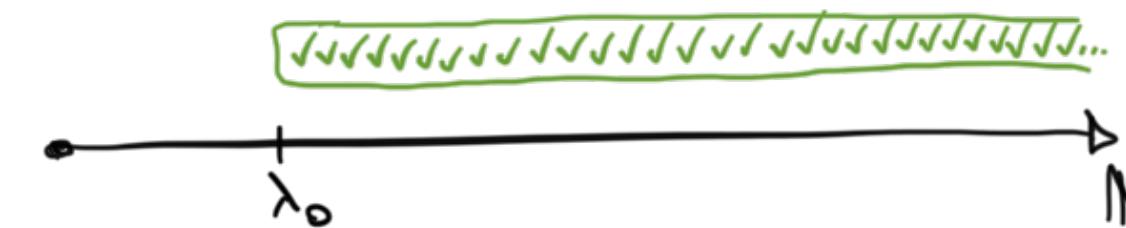
What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)



Traditional “almost-everywhere” soundness (ae-SND):

$$\forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in \mathbb{N}$$

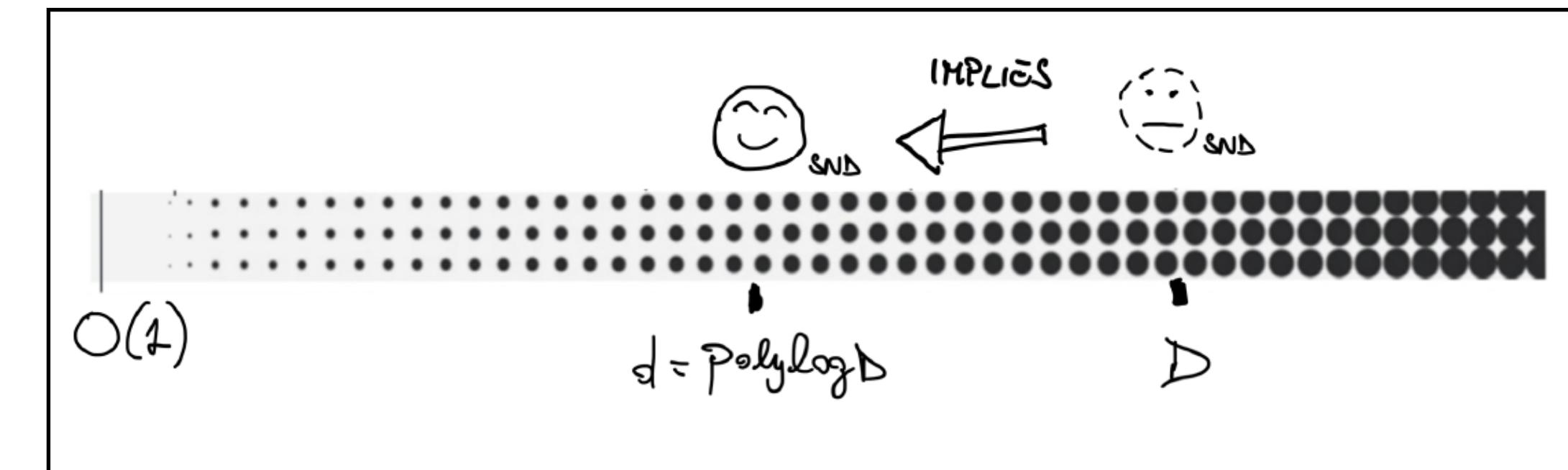


“Infinitely-often” soundness (io-SND):

$$\exists E \subseteq \mathbb{N} \quad \forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in E$$

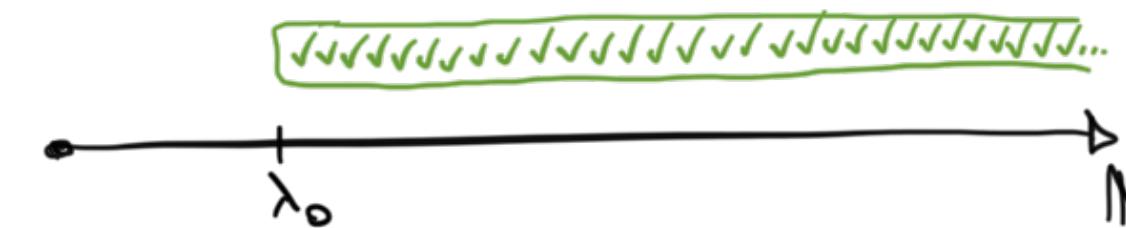
What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)



Traditional “almost-everywhere” soundness (ae-SND):

$$\forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in \mathbb{N}$$



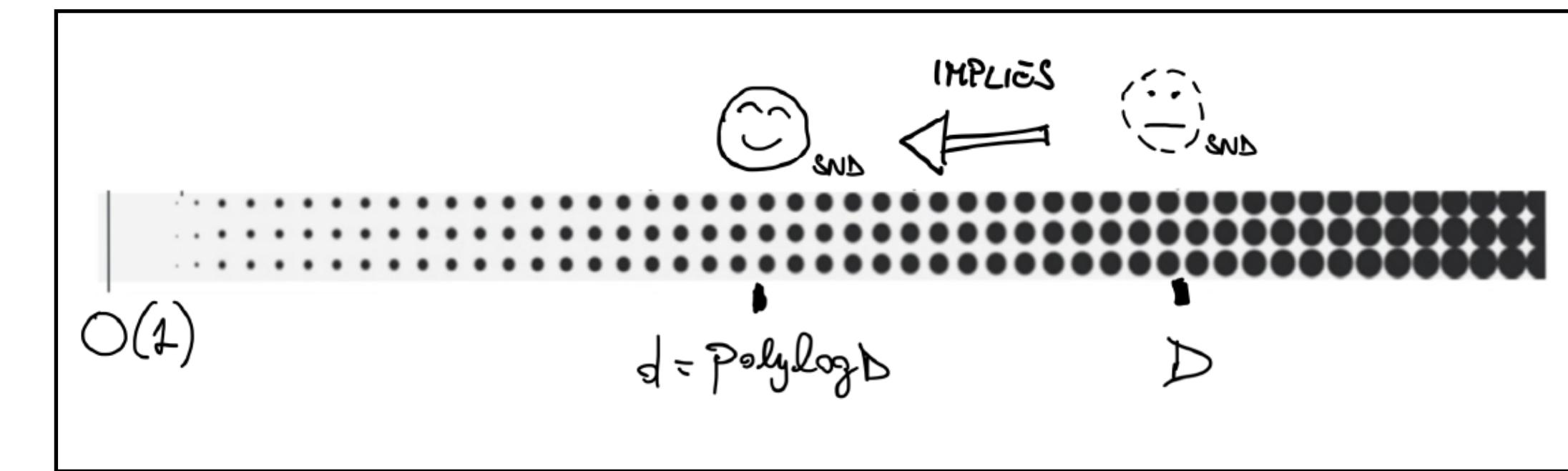
“Infinitely-often” soundness (io-SND):

$$\exists E \subseteq \mathbb{N} \quad \forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in E$$

infinite set
of parameters

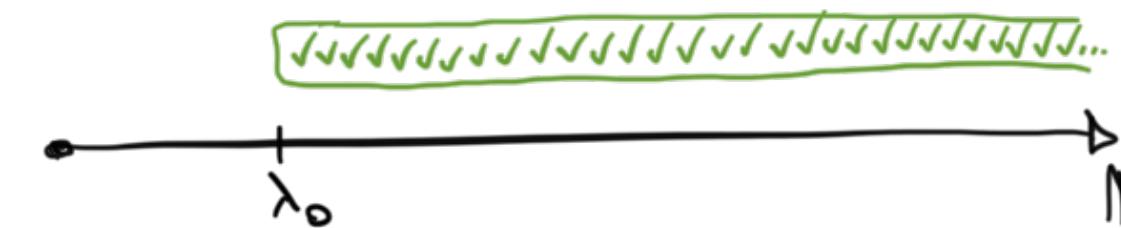
What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)



Traditional “almost-everywhere” soundness (ae-SND):

$$\forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in \mathbb{N}$$



“Ininitely-often” soundness (io-SND):

$$\exists E \subseteq \mathbb{N} \quad \forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in E$$

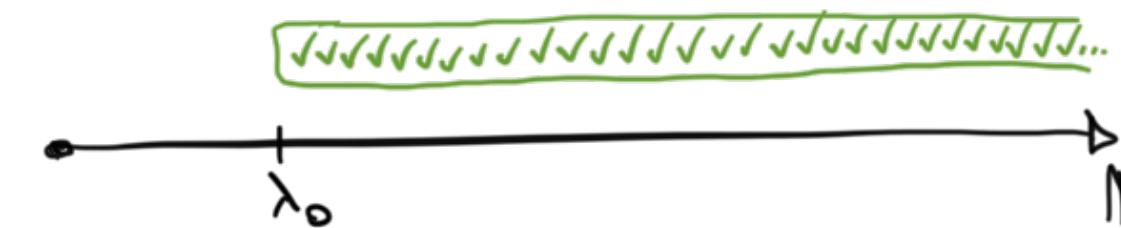
infinite set
of parameters

What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

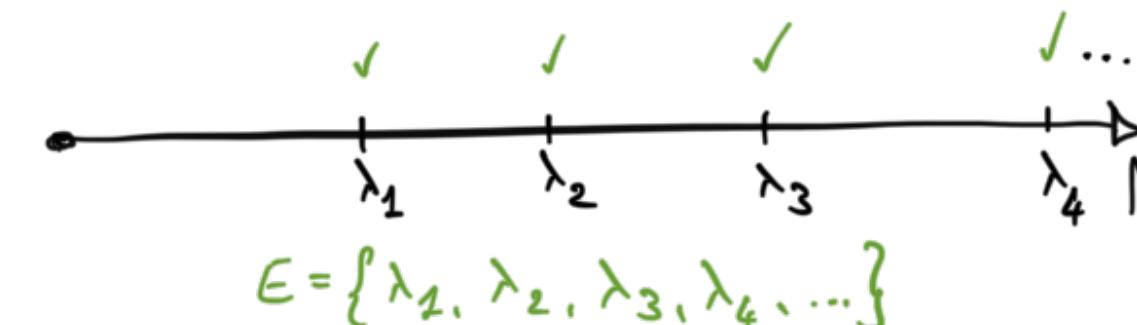
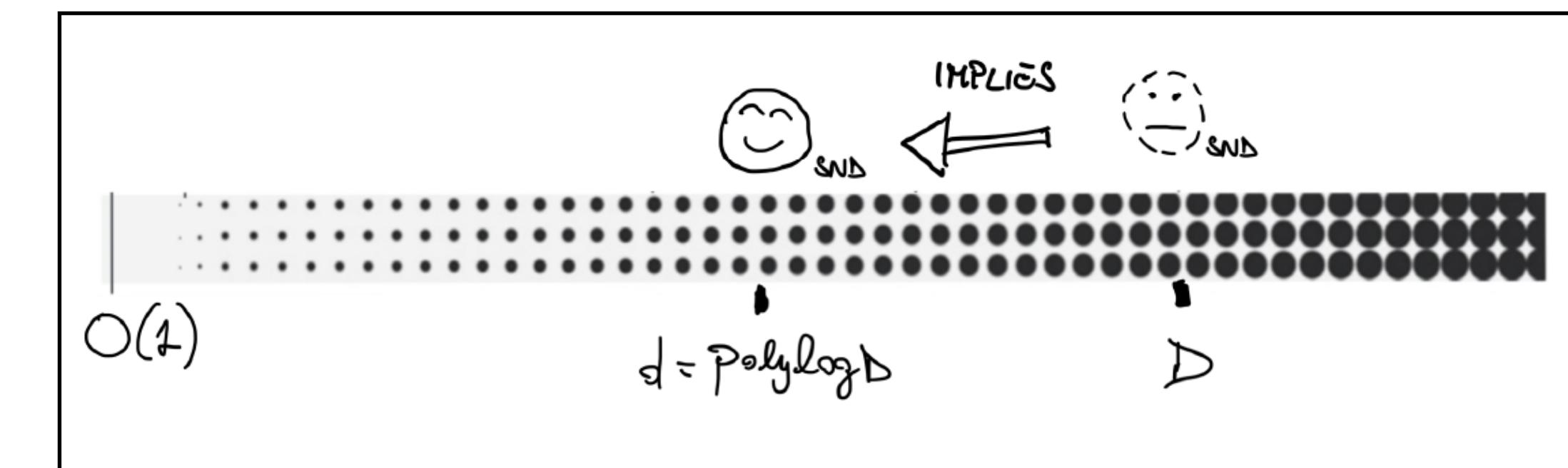
$$\forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in \mathbb{N}$$



“Ininitely-often” soundness (io-SND):

$$\exists E \subseteq \mathbb{N} \quad \forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in E$$

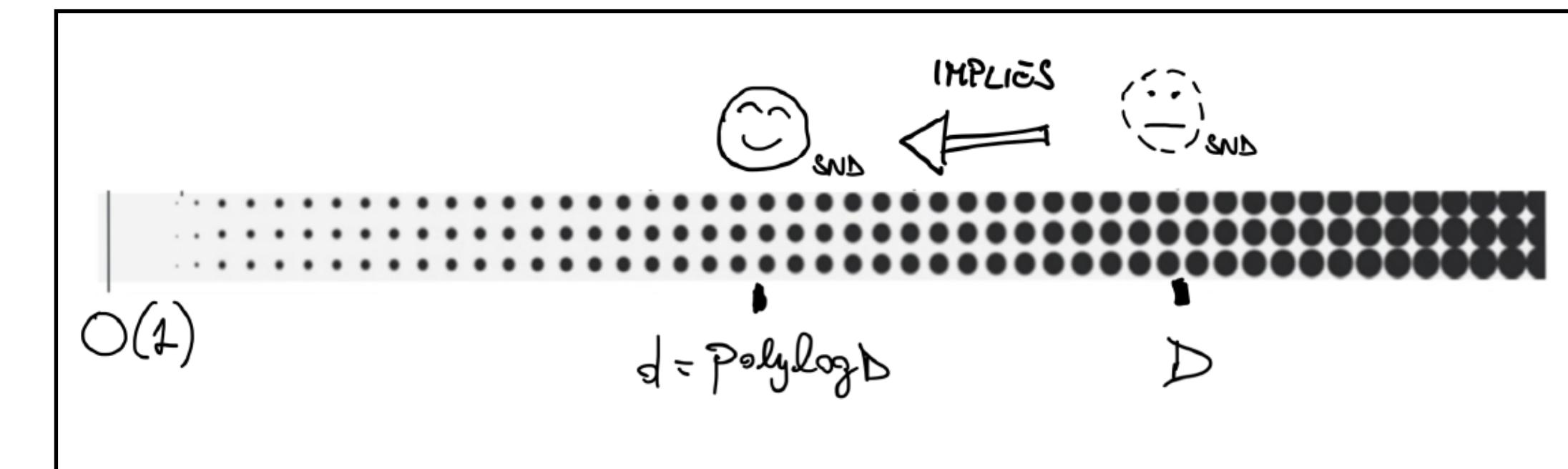
infinite set
of parameters



Cryptographers do find i.o. security interesting:

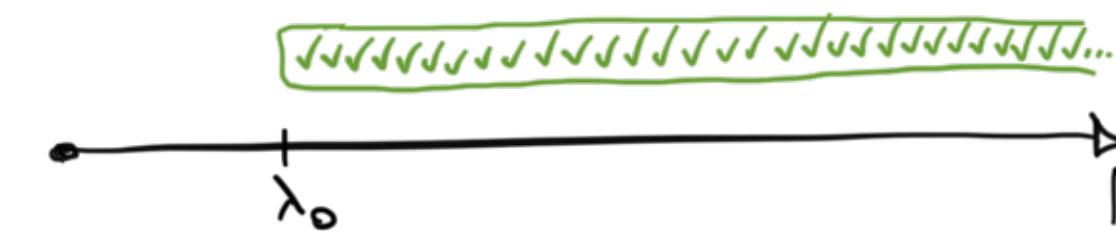
What Do We Mean by “Weak” Insecurity?

:= infinitely-often soundness (io-SND)



Traditional “almost-everywhere” soundness (ae-SND):

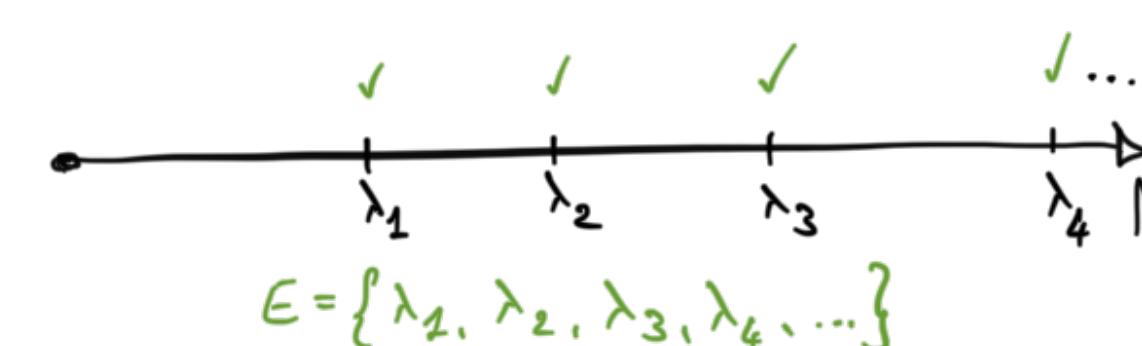
$$\forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in \mathbb{N}$$



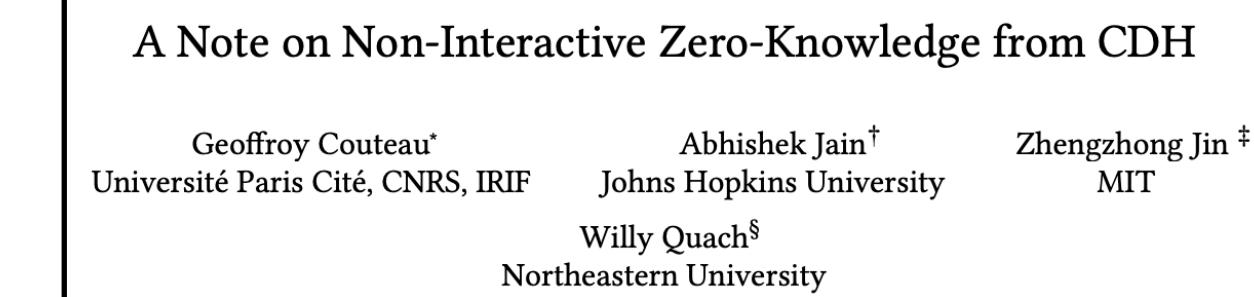
“Infinitely-often” soundness (io-SND):

$$\exists E \subseteq \mathbb{N} \quad \forall \text{PPT } \mathcal{A} \quad \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^{\mathcal{A}}(\lambda) \leq \varepsilon(\lambda) \quad \forall \lambda \in E$$

infinite set
of parameters



Cryptographers do find i.o. security interesting:



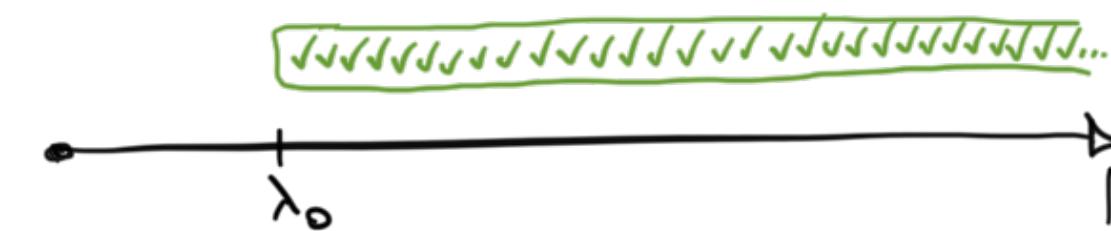
[CRYPTO '23]: builds i.o.-SND NIZKs from sub-exp CDH.

What Do We Mean by “Weak” Insecurity?

 := *infinitely-often* soundness (io-SND)

Traditional “almost-everywhere” soundness (ae-SND):

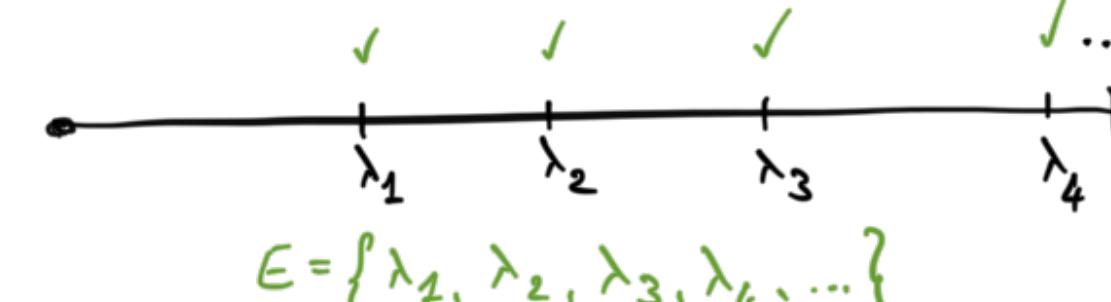
forall PPT A exists $\epsilon_{\text{negl}}(\lambda)$: $\text{ADV}_{\text{SND}}^A(\lambda) \leq \epsilon(\lambda) \quad \forall \lambda \in \mathbb{N}$



“Infinitely-often” soundness (io-SND):

$\exists E \subseteq \mathbb{N} \text{ PPT } \lambda \exists \varepsilon \in \text{negl}(\lambda) : \text{ADV}_{\text{SND}}^A(\lambda) \leq \varepsilon(\lambda) \forall \lambda \in E$

infinite set
of parameters



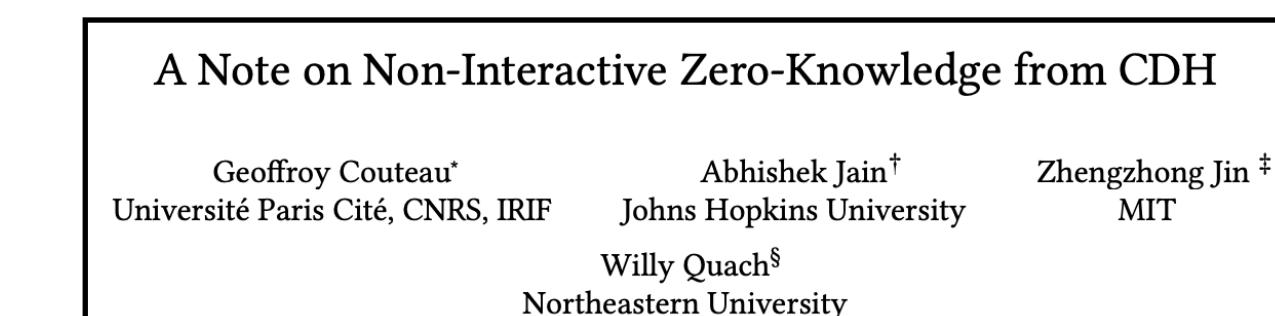
IMPLIES

$O(1)$

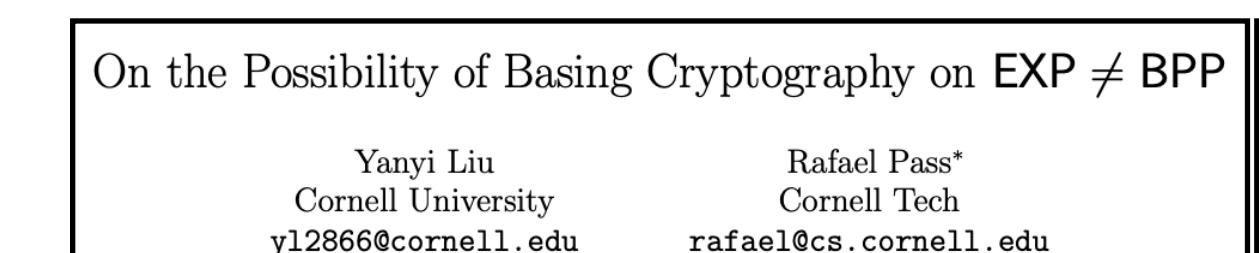
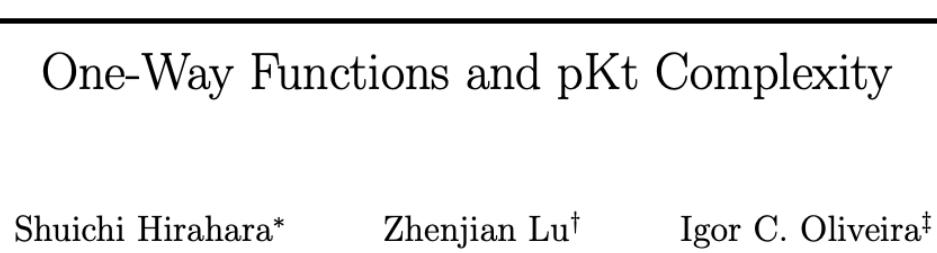
$d = \text{Polylog } D$

D

Cryptographers do find i.o. security interesting:



[CRYPTO '23]: builds i.o.-SND NIZKs from sub-exp CDH.



[CRYPTO '21, TCC '24]:
connect \exists of i.o.-OWF to certain worst-case assumptions.

Our Results

(continued)

Our Results

(continued)

Motivating question for next result:

Let Π be an IVC (e.g., secure at $O(1)$ depth).

Our Results

(continued)

Motivating question for next result:

Let Π be an IVC (e.g., secure at $O(1)$ depth).

Our Results (continued)

Motivating question for next result:

Let Π be an IVC (e.g., secure at $O(1)$ depth).

Our Results

(continued)

Motivating question for next result:

Let Π be an IVC (e.g., secure at $O(1)$ depth).

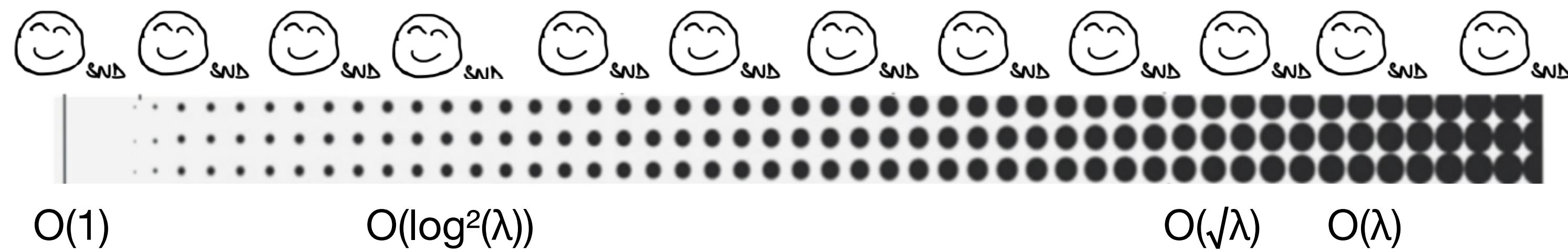
Case 1: security everywhere.

Our Results

(continued)

Motivating question for next result:

Let Π be an IVC (e.g., secure at $O(1)$ depth).

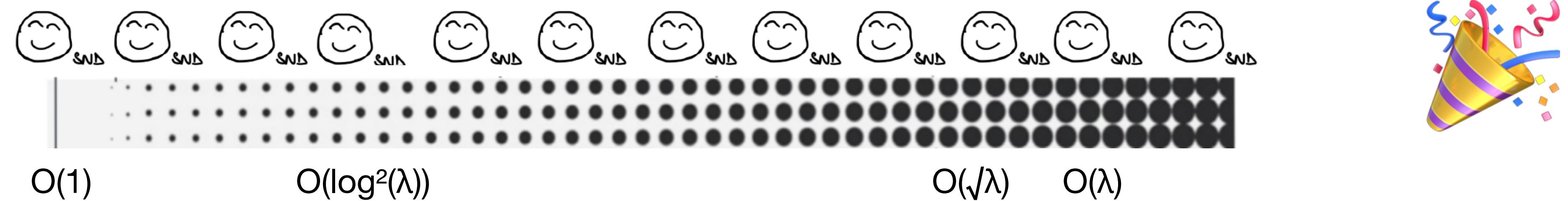


Case 1: security everywhere.

Our Results (continued)

Motivating question for next result:

Let Π be an IVC (e.g., secure at $O(1)$ depth).



Case 1: security everywhere.

Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

Case 2: insecure somewhere.

Our Results

(continued)

Motivating question for next result:

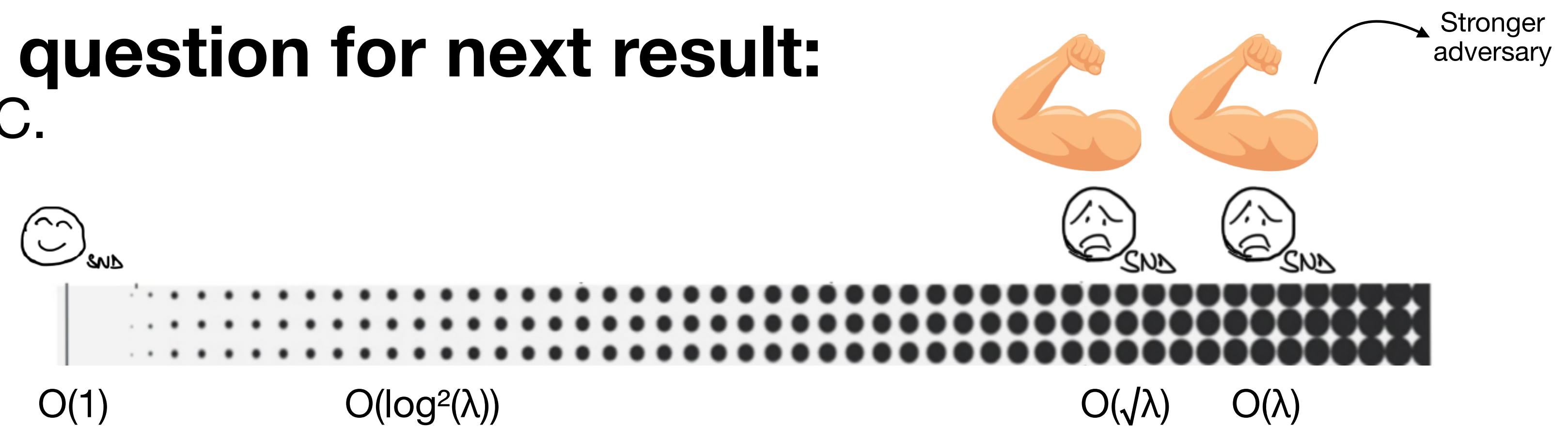
Let Π be an IVC.

Case 2: insecure somewhere.

Our Results (continued)

Motivating question for next result:

Let Π be an IVC.



Case 2: insecure somewhere.

Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

Case 2: insecure somewhere.

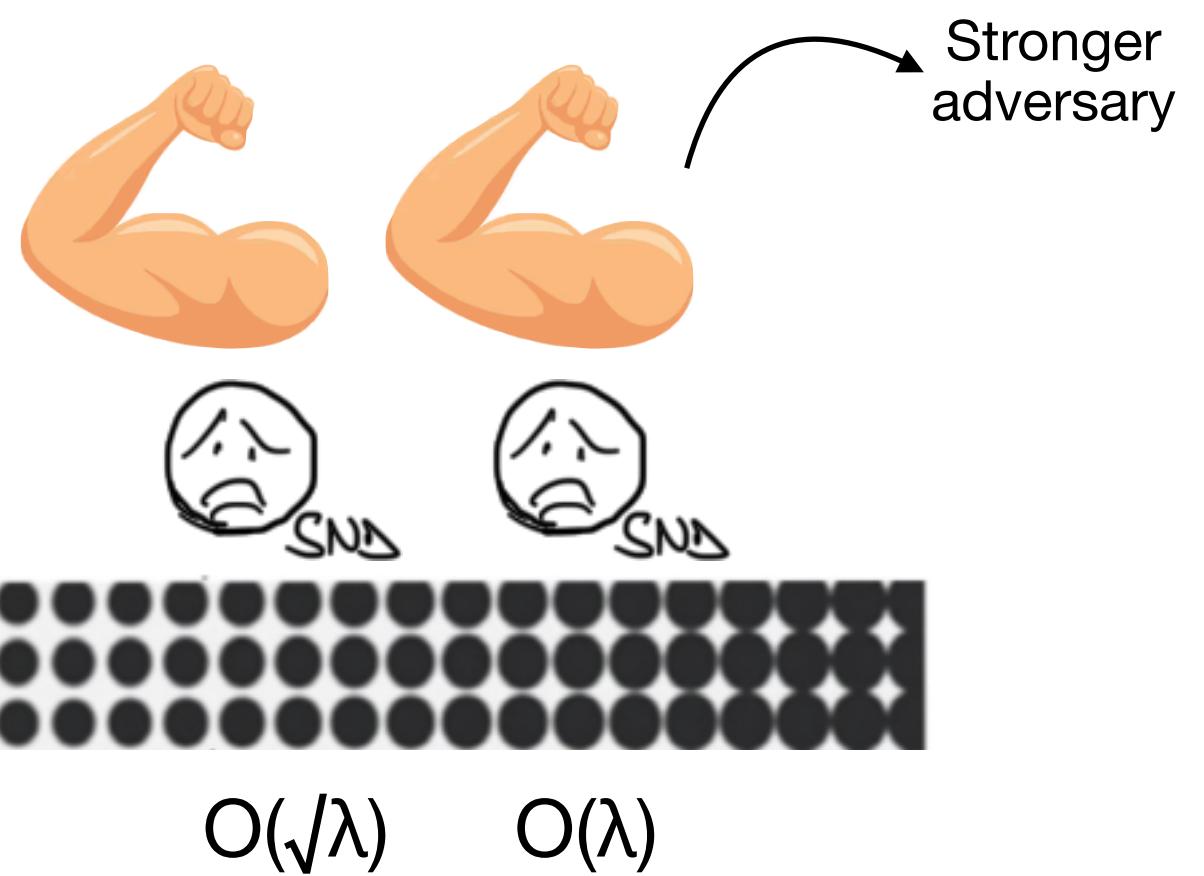
Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A}$ with $\text{Time}(\mathcal{A}) \leq T: O(1)$

$O(\log^2(\lambda))$



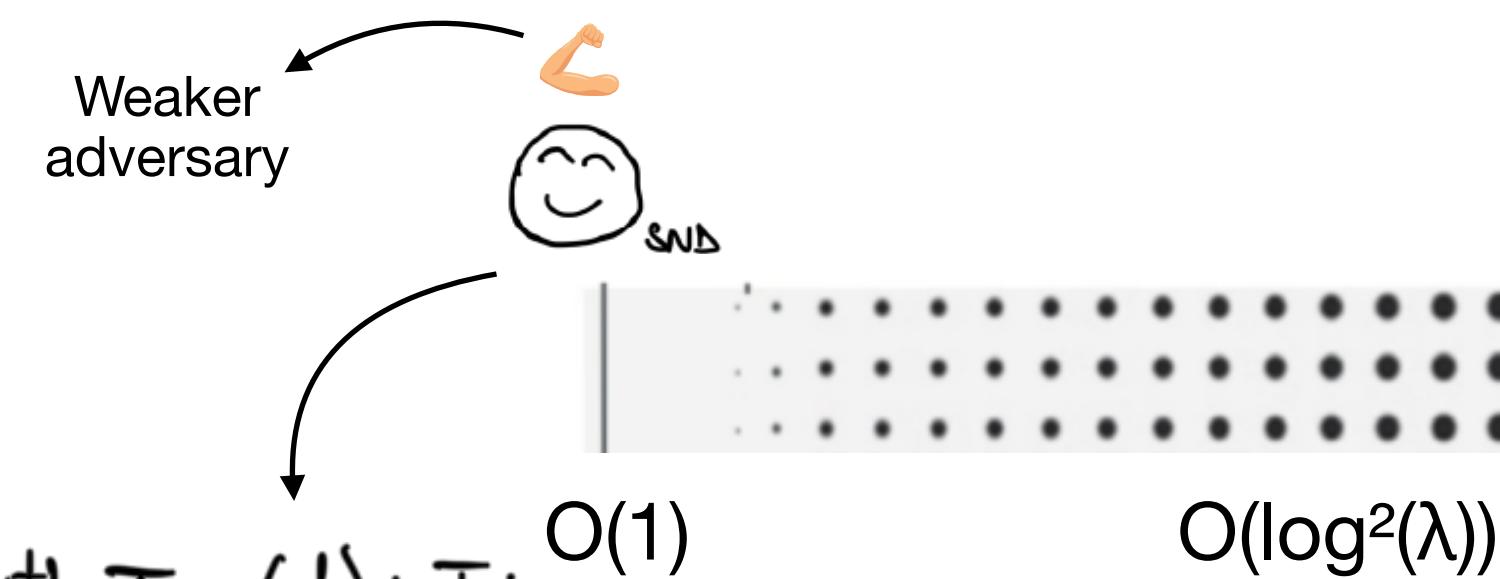
Case 2: insecure somewhere.

Our Results (continued)

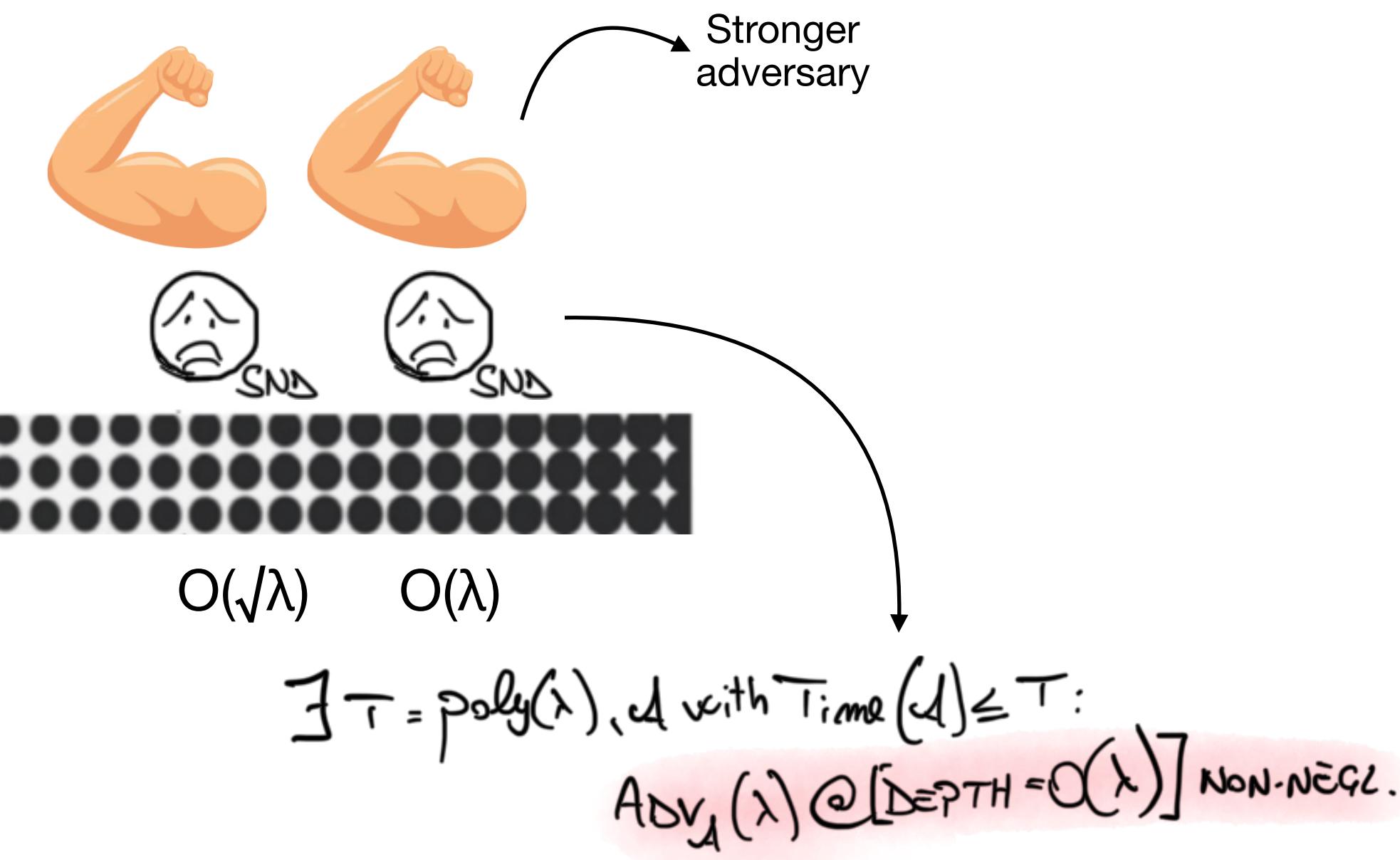
Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: \text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$



$O(\log^2(\lambda))$



$O(\sqrt{\lambda}) \quad O(\lambda)$

$\exists T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: \text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(\lambda)] \text{ NON-NEGL.}$

Case 2: insecure somewhere.

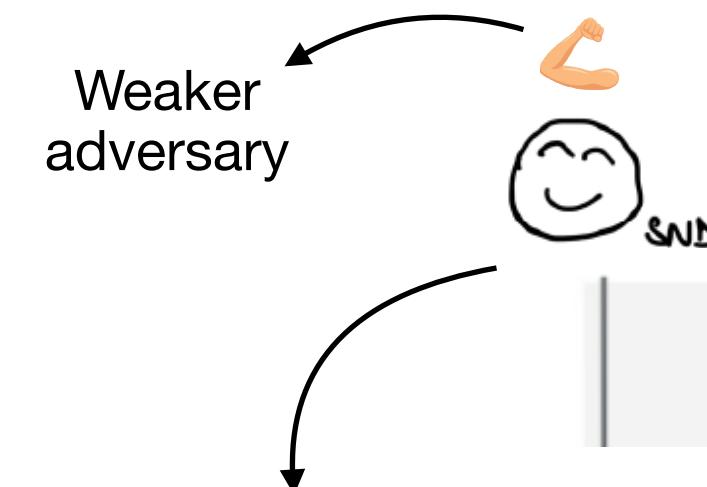
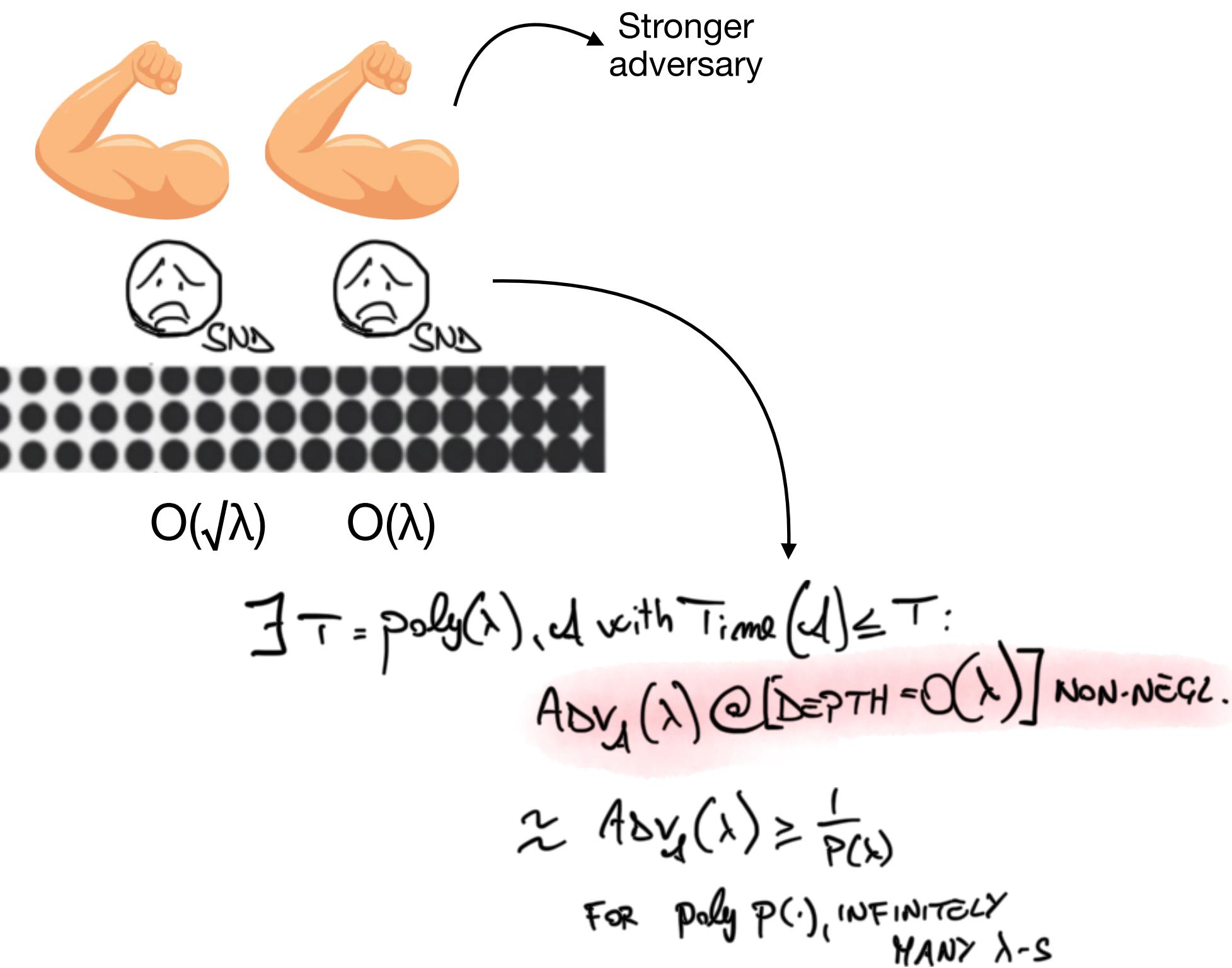
Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A}$ with $\text{Time}(\mathcal{A}) \leq T: \text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)]$ is NEGL.

$O(\log^2(\lambda))$

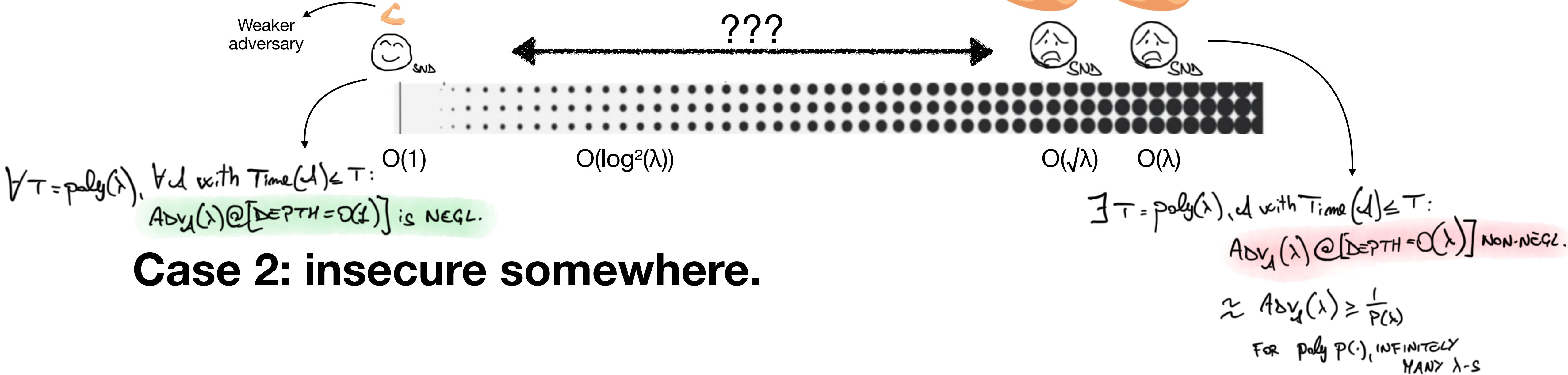


Case 2: insecure somewhere.

Our Results (continued)

Motivating question for next result:

Let Π be an IVC.



Case 2: insecure somewhere.

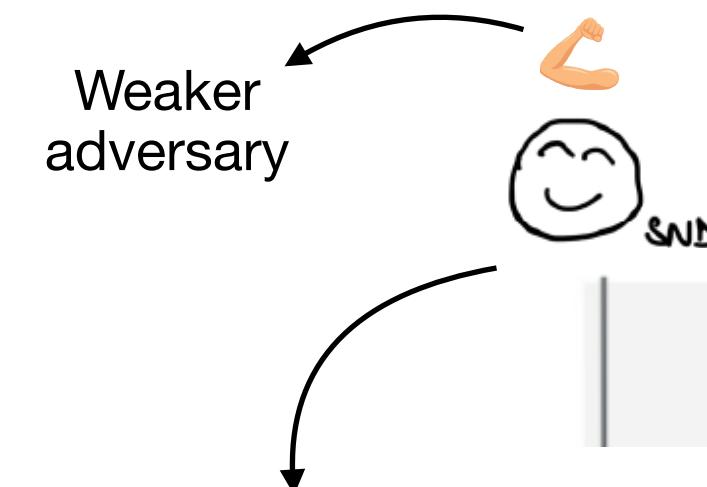
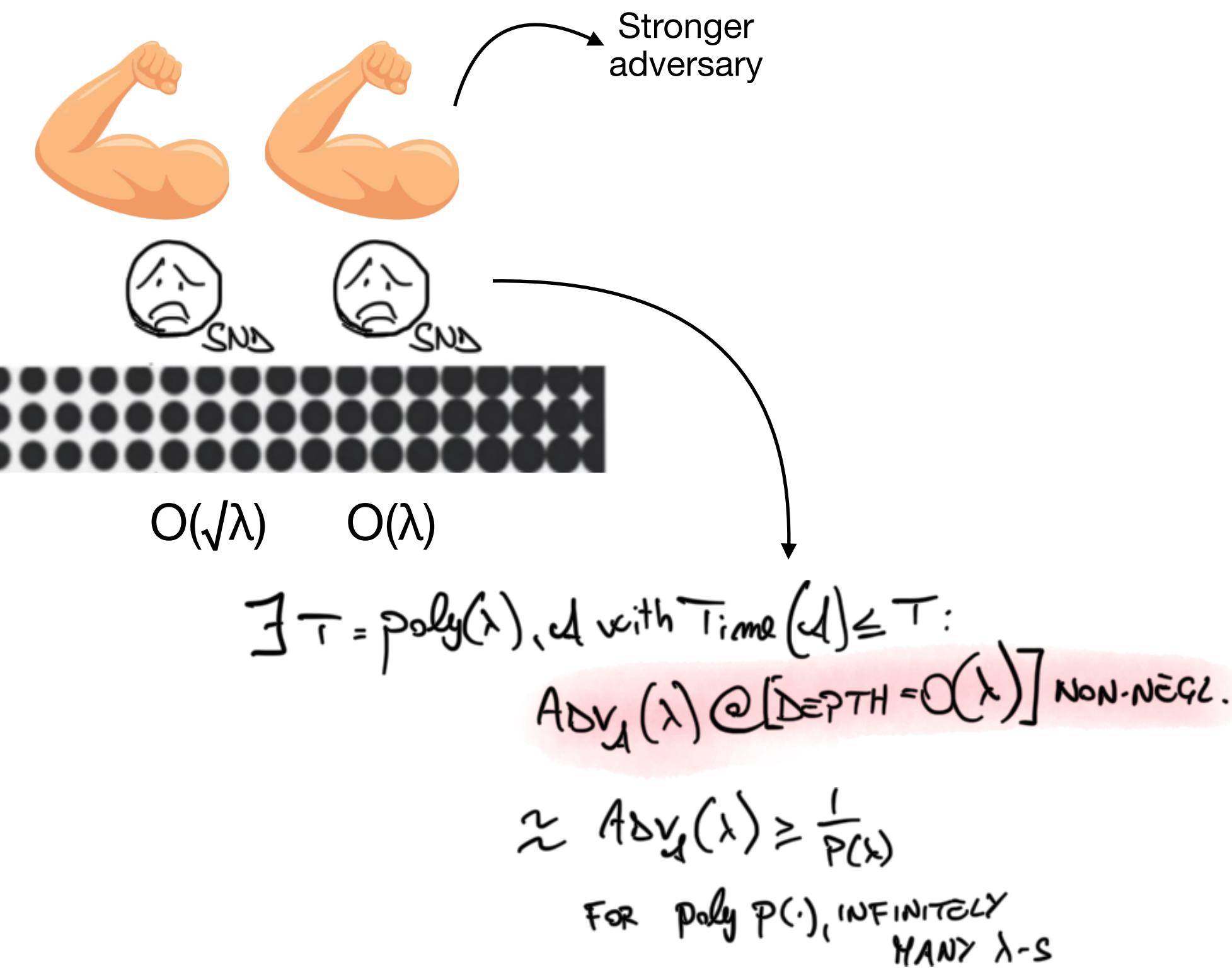
Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A}$ with $\text{Time}(\mathcal{A}) \leq T: \text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)]$ is NEGL.

$O(\log^2(\lambda))$



Case 2: insecure somewhere.

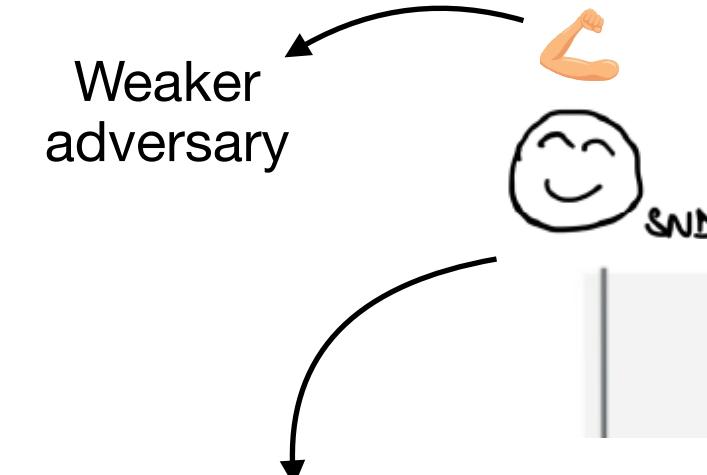
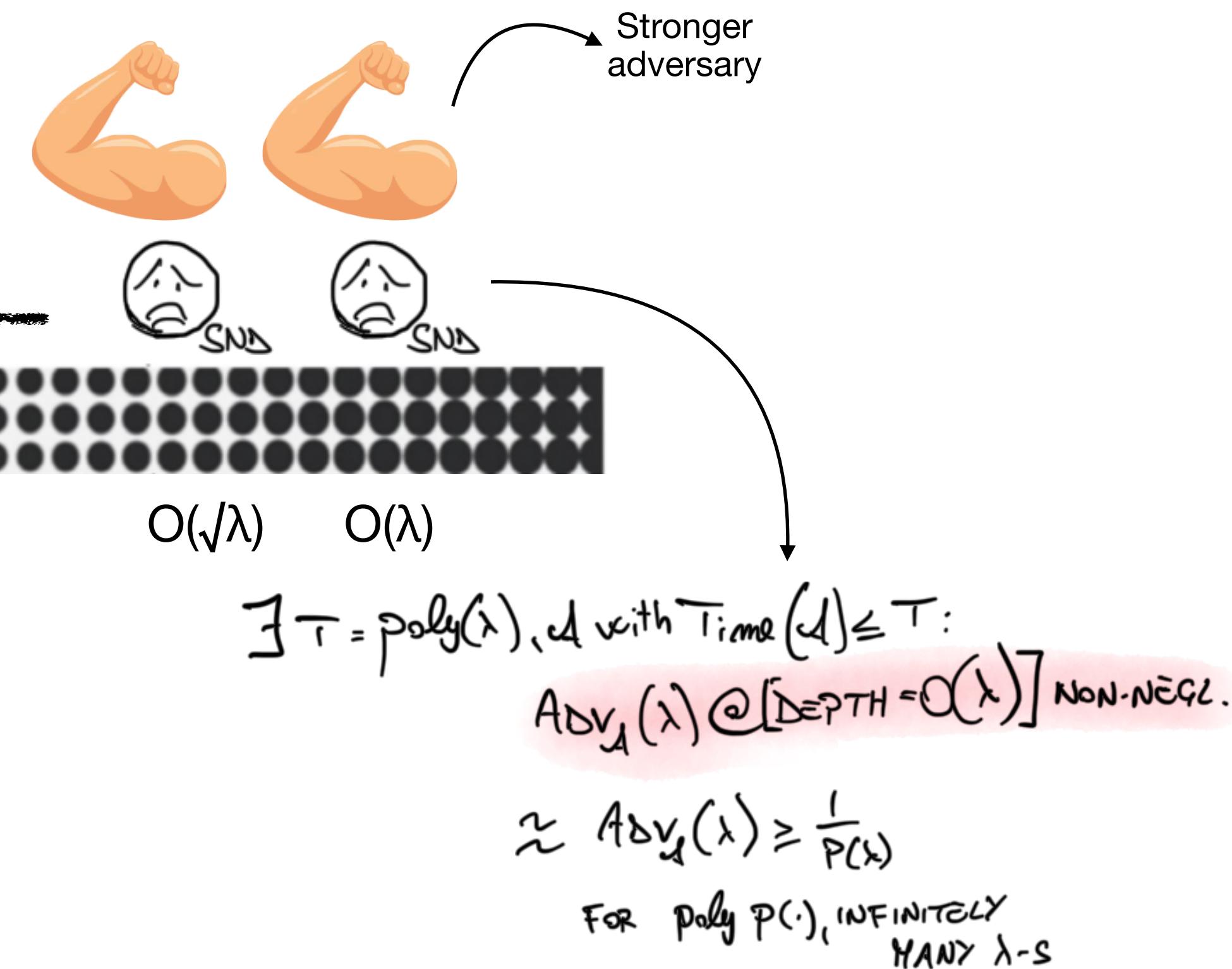
Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

$O(\log^2(\lambda))$



Case 2: insecure somewhere.

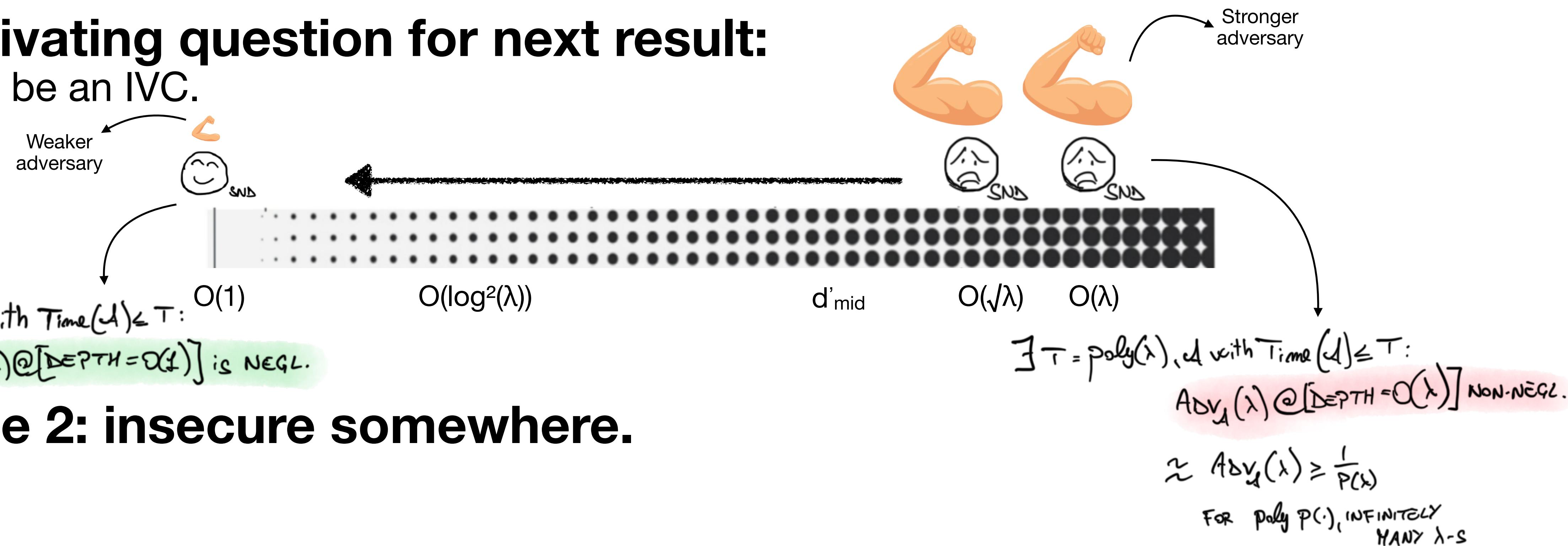
Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



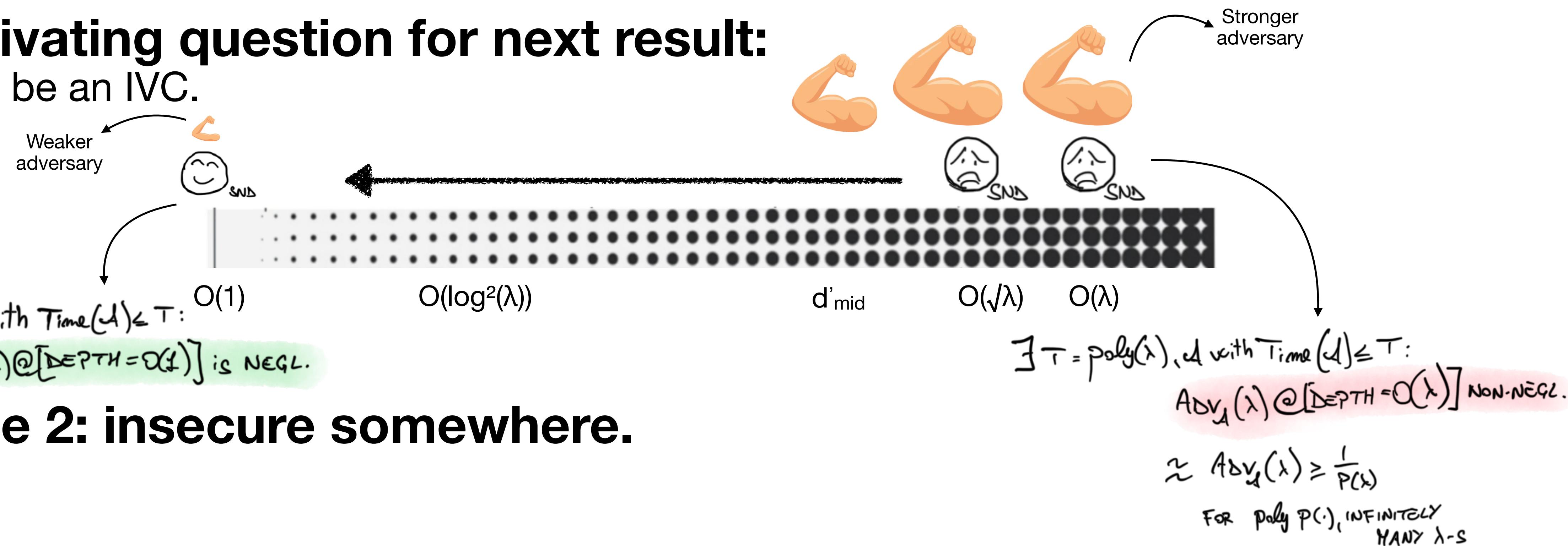
Our Results (continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



Our Results

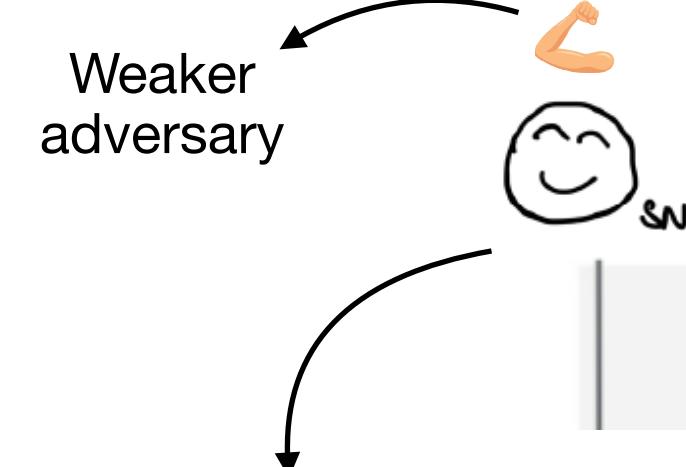
(continued)

Motivating question for next result:

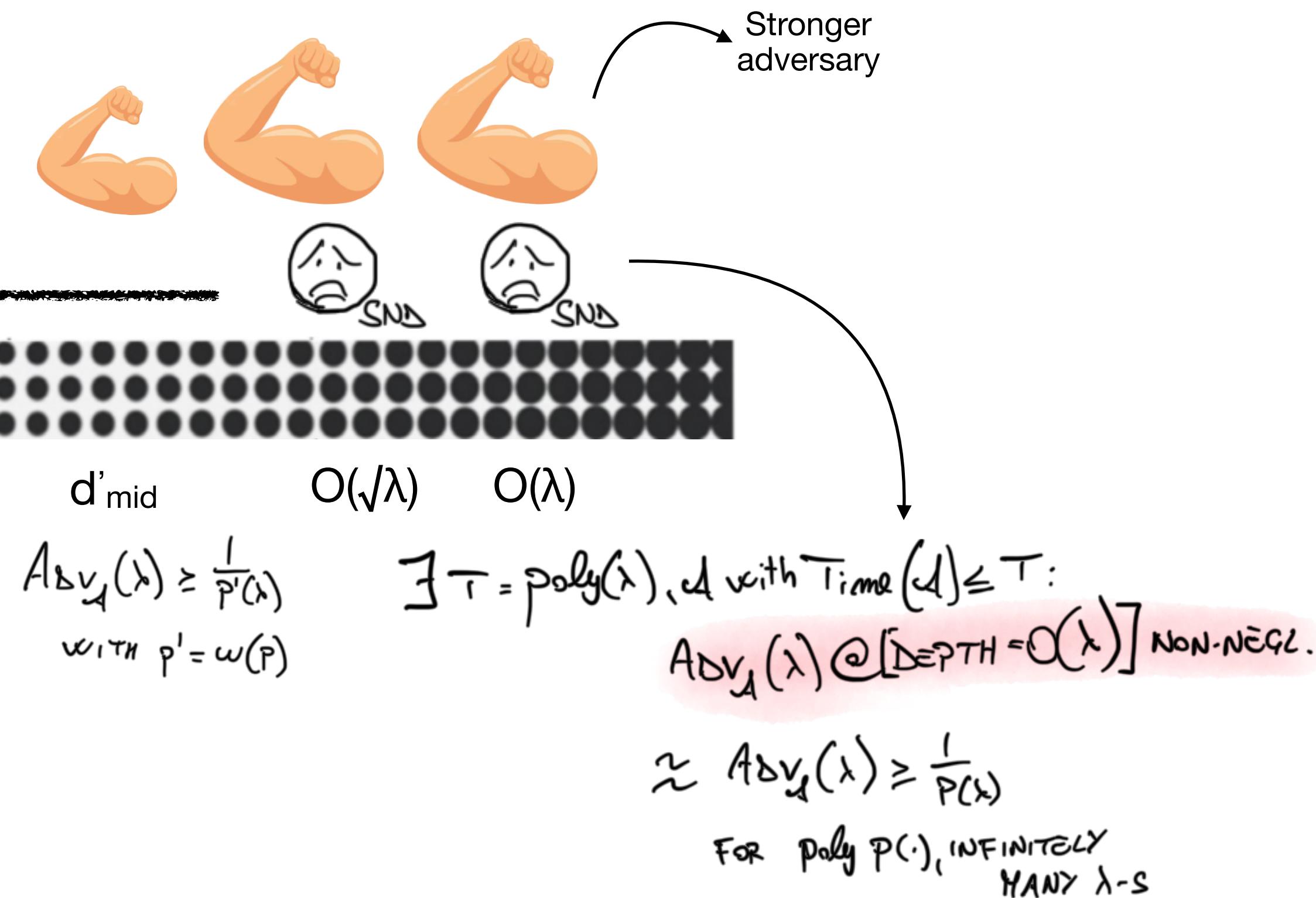
Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



$O(\log^2(\lambda))$



Our Results

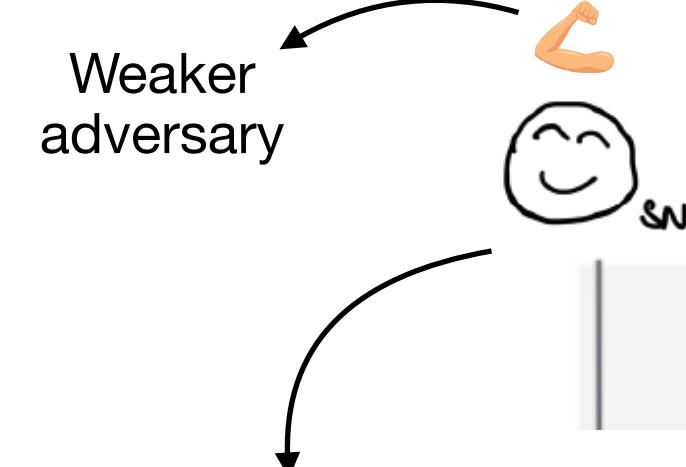
(continued)

Motivating question for next result:

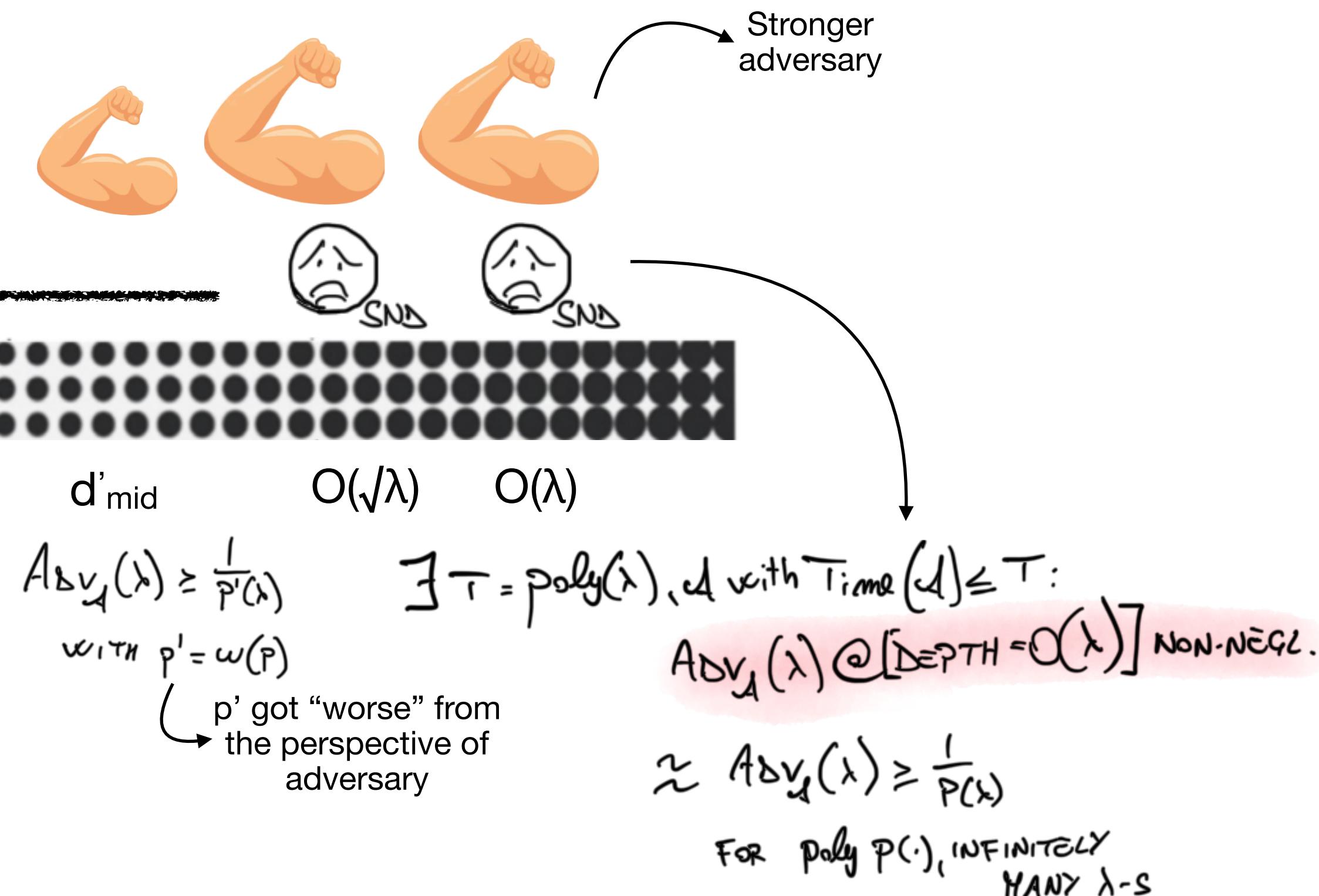
Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



$O(\log^2(\lambda))$



Our Results

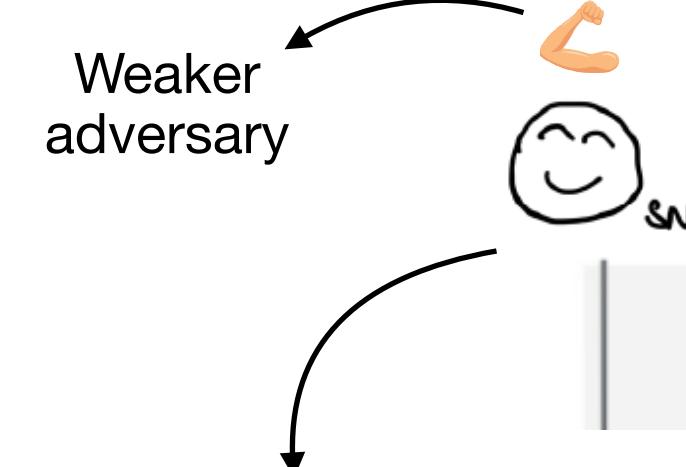
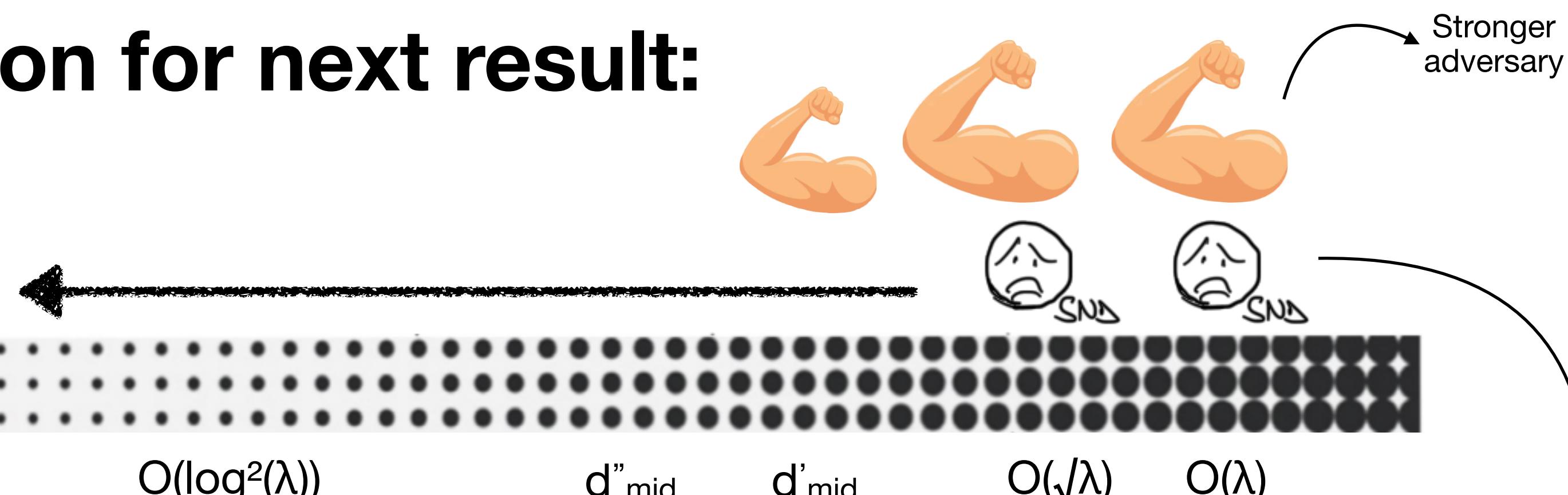
(continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



$\text{Adv}_{\mathcal{A}}(\lambda) \geq \frac{1}{P'(\lambda)}$
 with $P' = w(P)$
 p' got "worse" from
 the perspective of
 adversary

$\exists T = \text{poly}(\lambda), \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T:$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(\lambda)] \text{ NON-NEGL.}$

$\approx \text{Adv}_{\mathcal{A}}(\lambda) \geq \frac{1}{P(\lambda)}$
 FOR poly $P(\cdot)$, INFINITELY
 MANY λ -s

Our Results

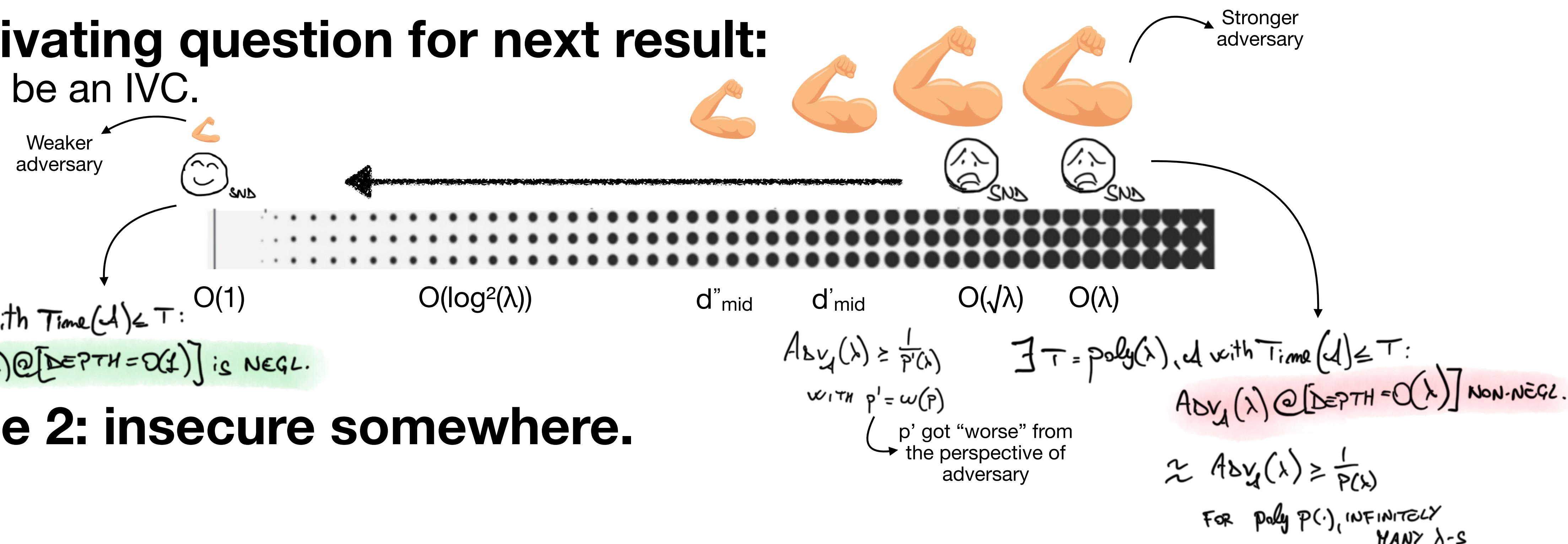
(continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



Our Results

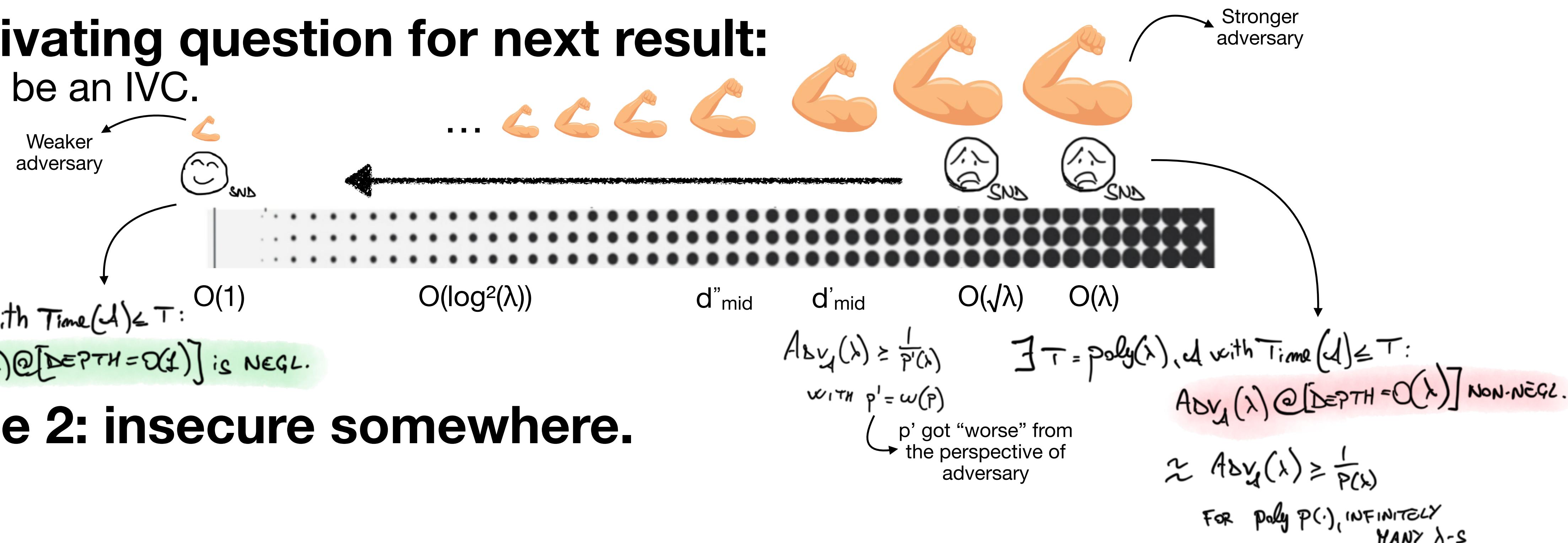
(continued)

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



Our Results (continued)

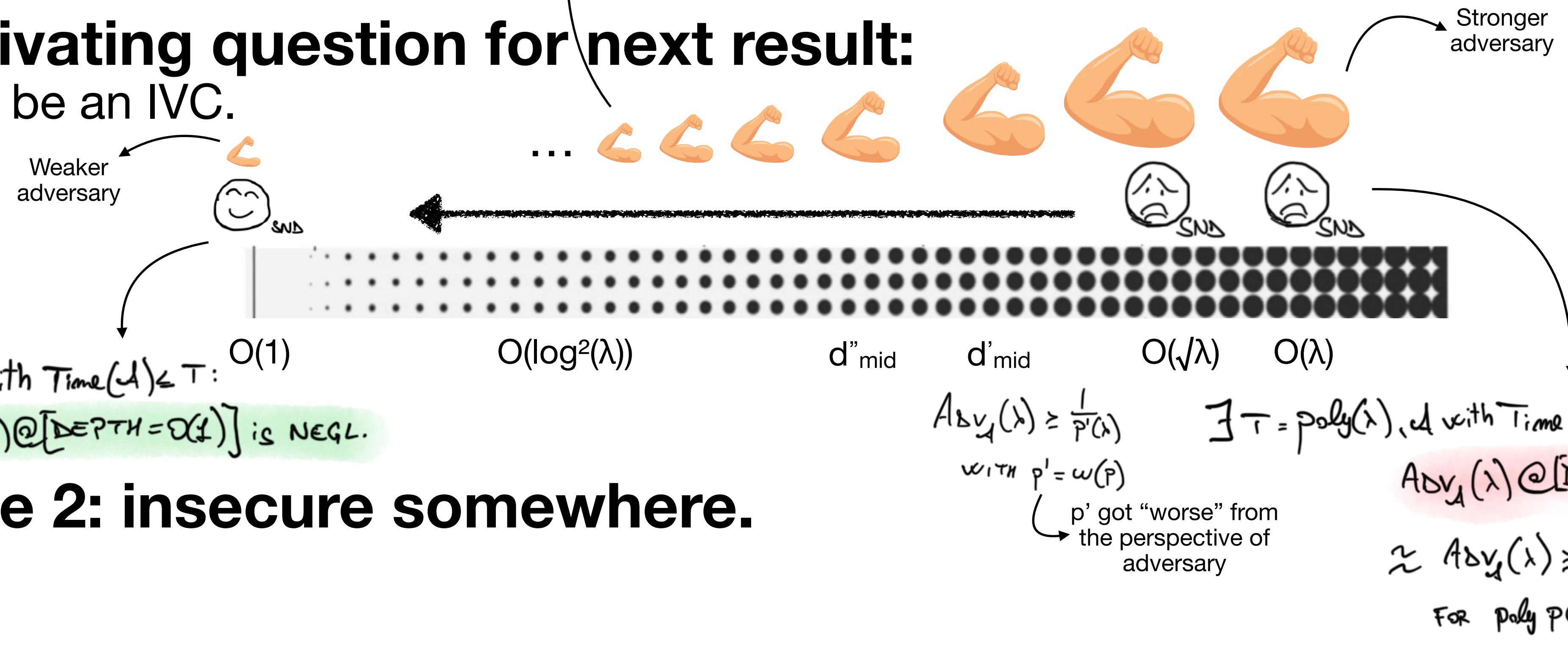
Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.

We call this (potential) pattern in IVC
graceful security degradation



Our Results (continued)

Q: Can an IVC exhibit it?

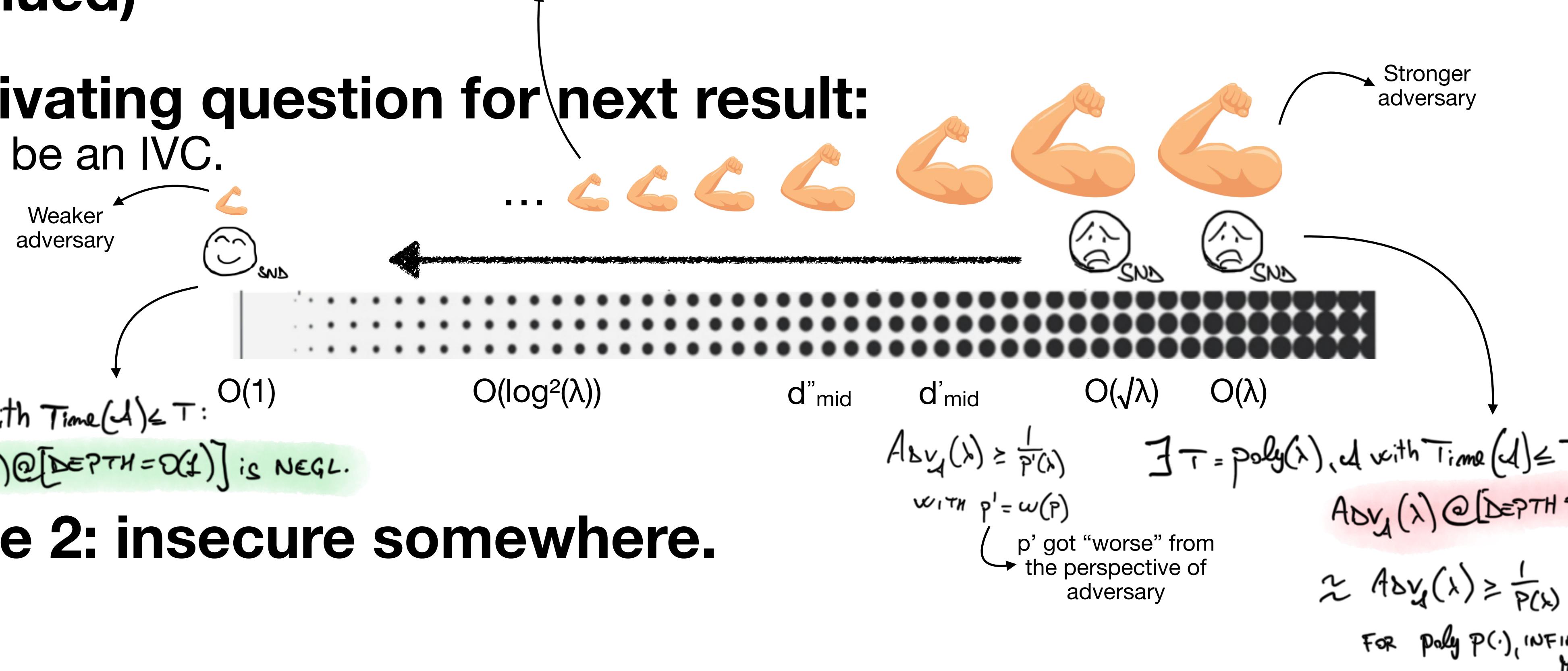
We call this (potential) pattern in IVC
graceful security degradation

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



Our Results (continued)

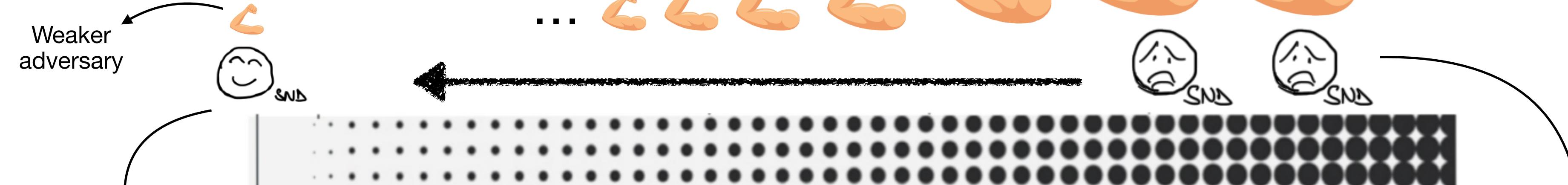
Q: Can an IVC exhibit it?

We call this (potential) pattern in IVC
graceful security degradation

A practical framing around graceful sec. degradation:

Motivating question for next result:

Let Π be an IVC.



$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: \text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.

$\text{Adv}_{\mathcal{A}}(\lambda) \geq \frac{1}{P'(\lambda)}$
with $P' = w(P)$
p' got "worse" from
the perspective of
adversary

$\exists T = \text{poly}(\lambda), \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: \text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(\lambda)] \text{ NON-NEGL.}$

$\approx \text{Adv}_{\mathcal{A}}(\lambda) \geq \frac{1}{P(\lambda)}$
FOR poly $P(\cdot)$, INFINITELY
MANY λ -s

Our Results (continued)

Q: Can an IVC exhibit it?

We call this (potential) pattern in IVC
graceful security degradation

A practical framing around graceful sec. degradation:

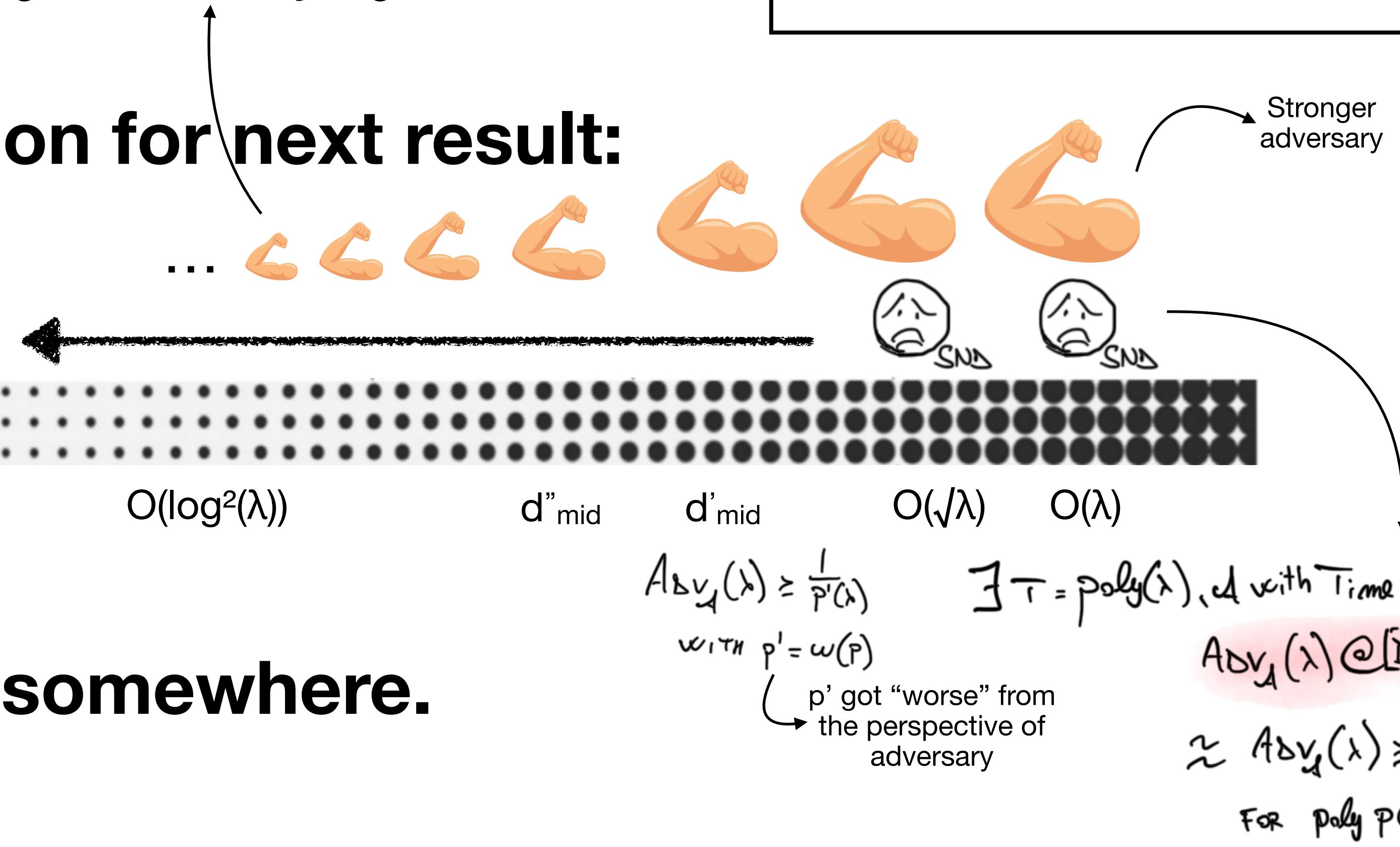
CCCCCCCC \approx better and better inverse poly-s

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



Our Results (continued)

Q: Can an IVC exhibit it?

We call this (potential) pattern in IVC graceful security degradation

A practical framing around graceful sec. degradation:

\approx better and better inverse poly-s

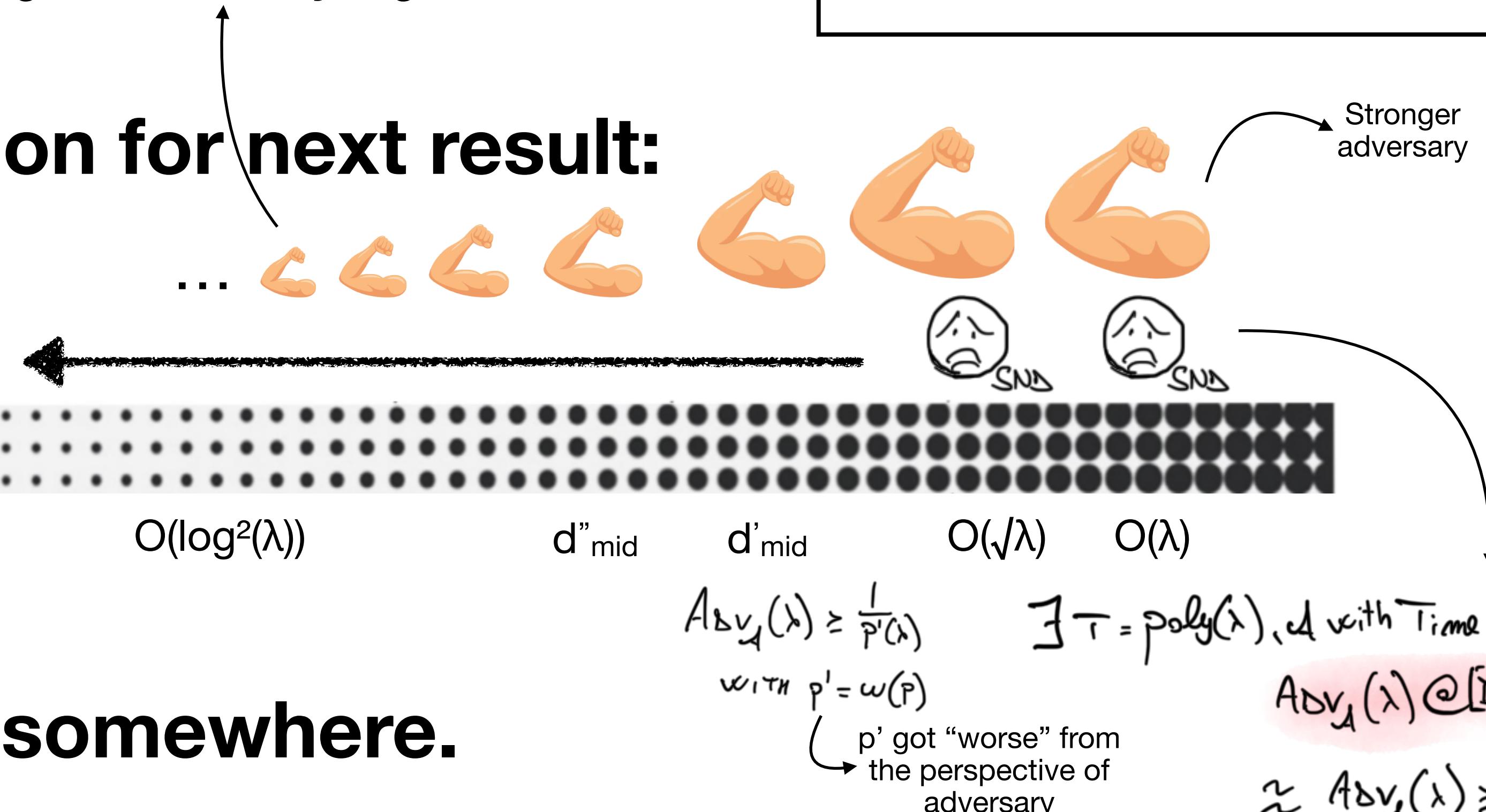
And cryptographers do sometimes work with inverse poly sec.

Motivating question for next result:

Let Π be an IVC.

$\forall T = \text{poly}(\lambda), \forall \mathcal{A} \text{ with } \text{Time}(\mathcal{A}) \leq T: O(1)$
 $\text{Adv}_{\mathcal{A}}(\lambda) @ [\text{DEPTH} = O(1)] \text{ is NEGL.}$

Case 2: insecure somewhere.



Our Results (continued)

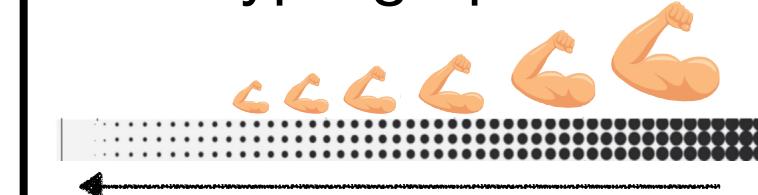
Q: Can an IVC exhibit it?

We call this (potential) pattern in IVC
graceful security degradation

A practical framing around graceful sec. degradation:

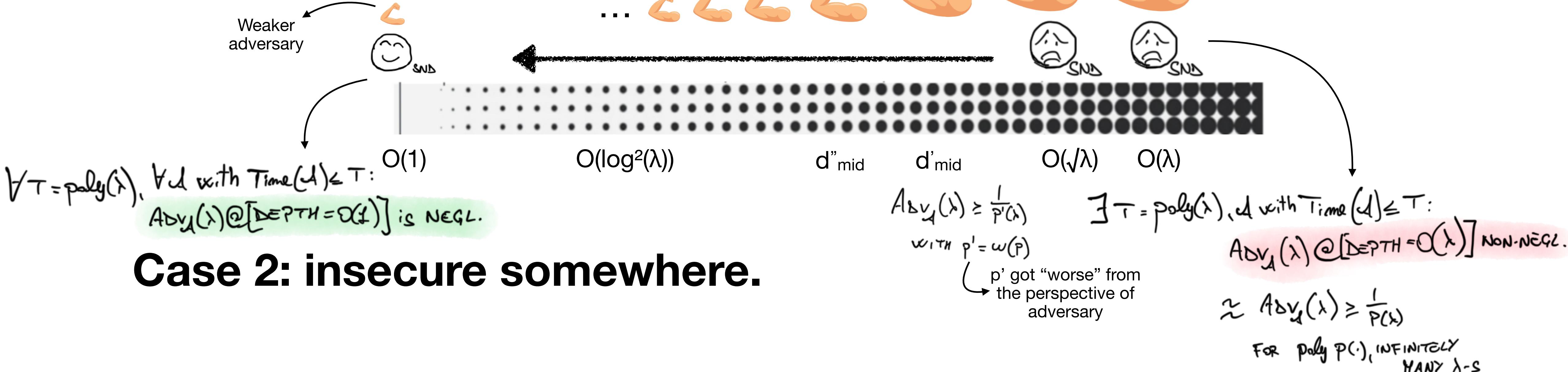
 \approx better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

 may offer tradeoffs to practitioners.

Motivating question for next result:

Let Π be an IVC.



Case 2: insecure somewhere.

Our Results (continued)

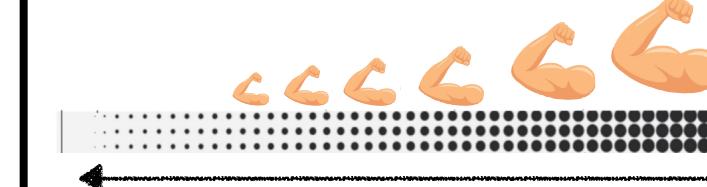
Q: Can an IVC exhibit it?

We call this (potential) pattern in IVC graceful security degradation

A practical framing around graceful sec. degradation:

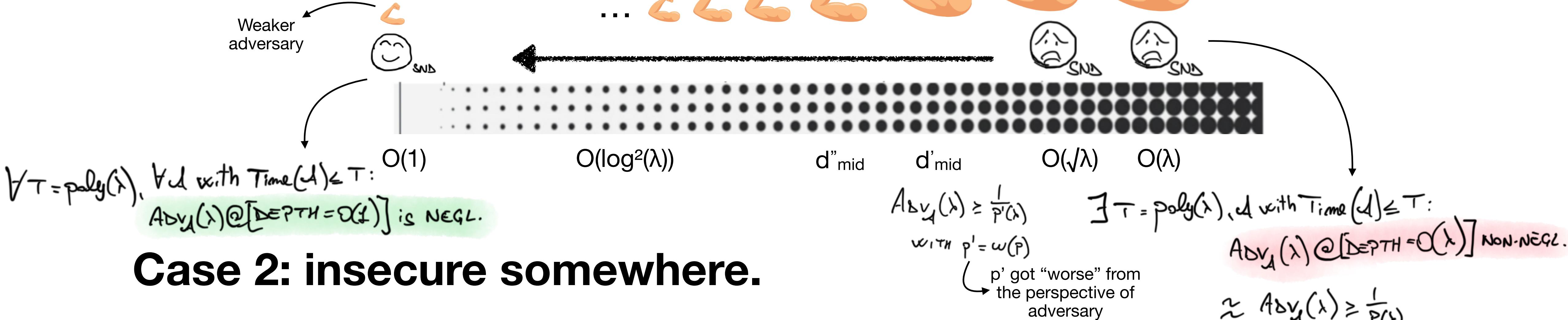
 \approx better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

 may offer tradeoffs to practitioners.

Motivating question for next result:

Let Π be an IVC.



Result (“no free snack” theorem):

Let Π be an IVC. Then:

Our Results (continued)

Q: Can an IVC exhibit it?

We call this (potential) pattern in IVC graceful security degradation

A practical framing around graceful sec. degradation:

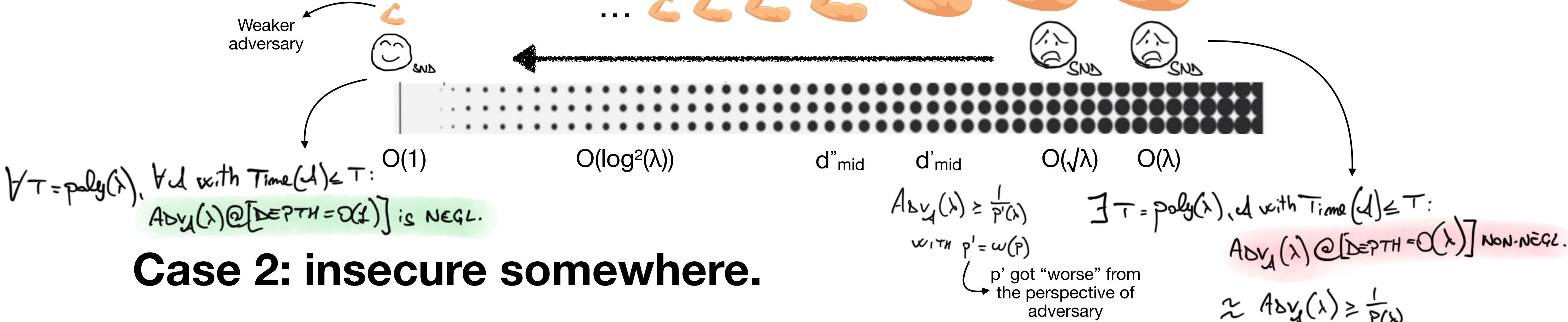
 \approx better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

 may offer tradeoffs to practitioners.

Motivating question for next result:

Let Π be an IVC.



Case 2: insecure somewhere.

Result (“no free snack” theorem):

Let Π be an IVC. Then:

- either Π is secure at arbitrary polynomial depths,

Our Results (continued)

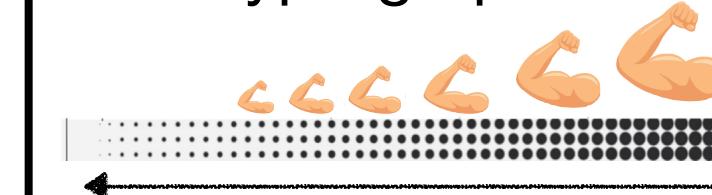
Q: Can an IVC exhibit it?

We call this (potential) pattern in IVC graceful security degradation

A practical framing around graceful sec. degradation:

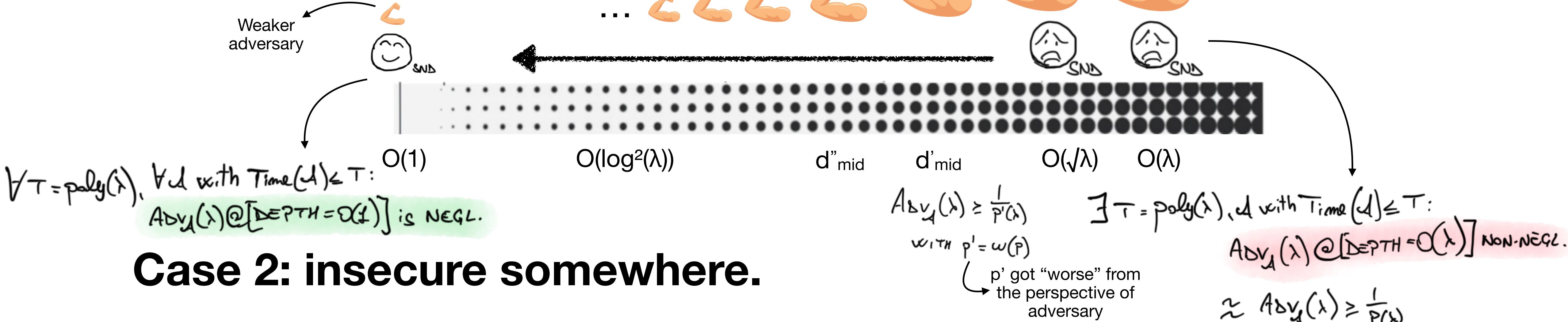
 \approx better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

 may offer tradeoffs to practitioners.

Motivating question for next result:

Let Π be an IVC.



Result ("no free snack" theorem):

Let Π be an IVC. Then:

- either Π is secure at arbitrary polynomial depths,
- or Π cannot exhibit graceful security degradation.

Our Results

(continued)

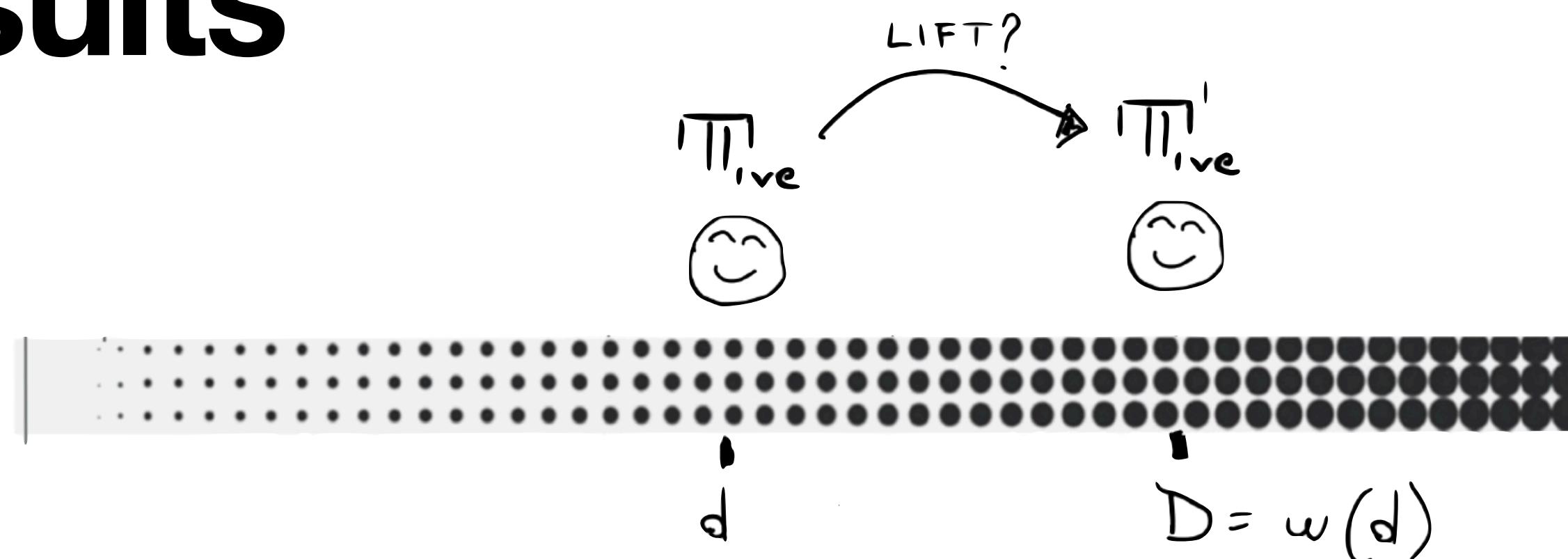
Our Results (continued)



Our Results (continued)

NB: We are interested in:

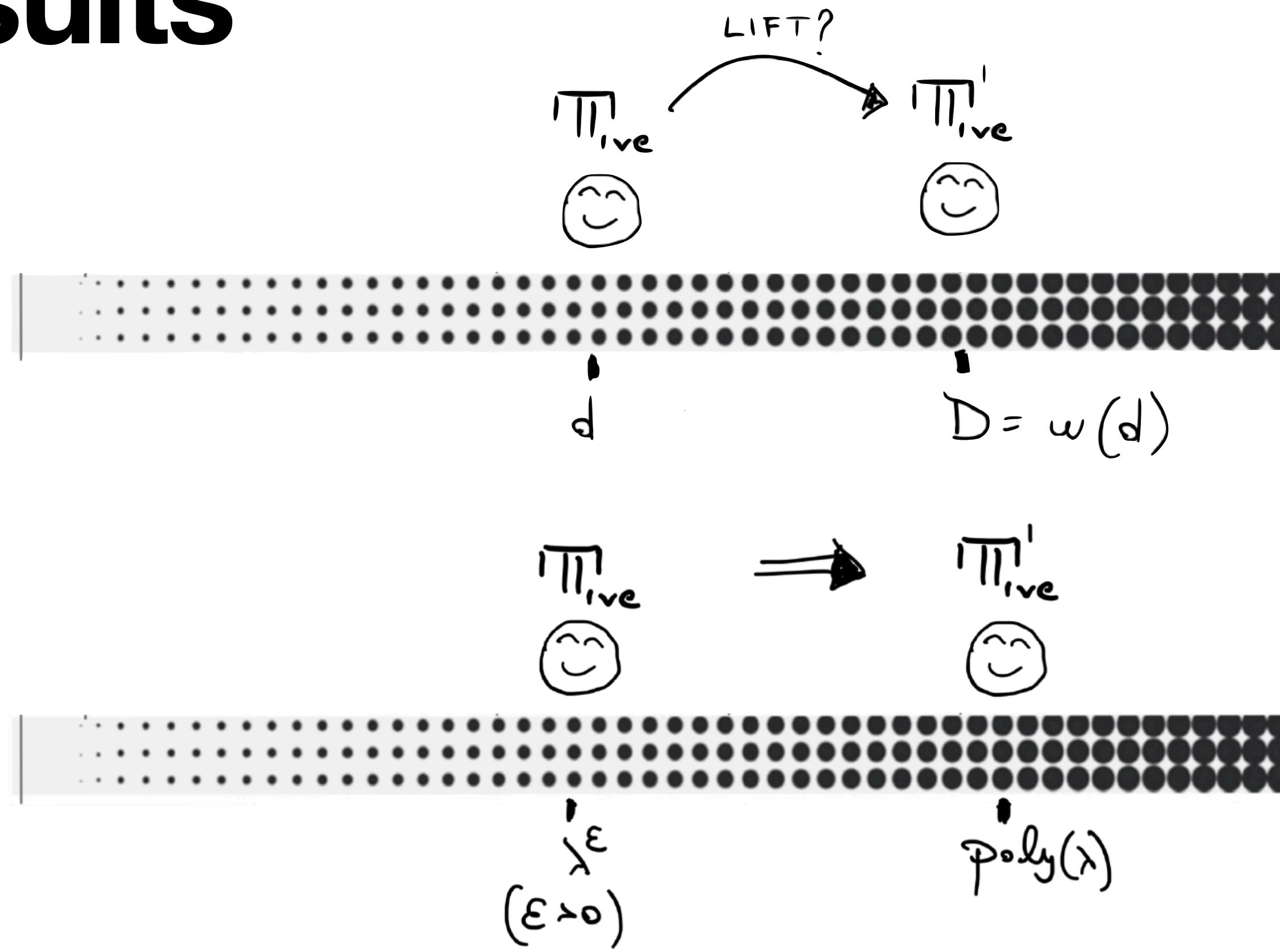
- black-box lifting results,
- and that preserve performance.



Our Results (continued)

NB: We are interested in:

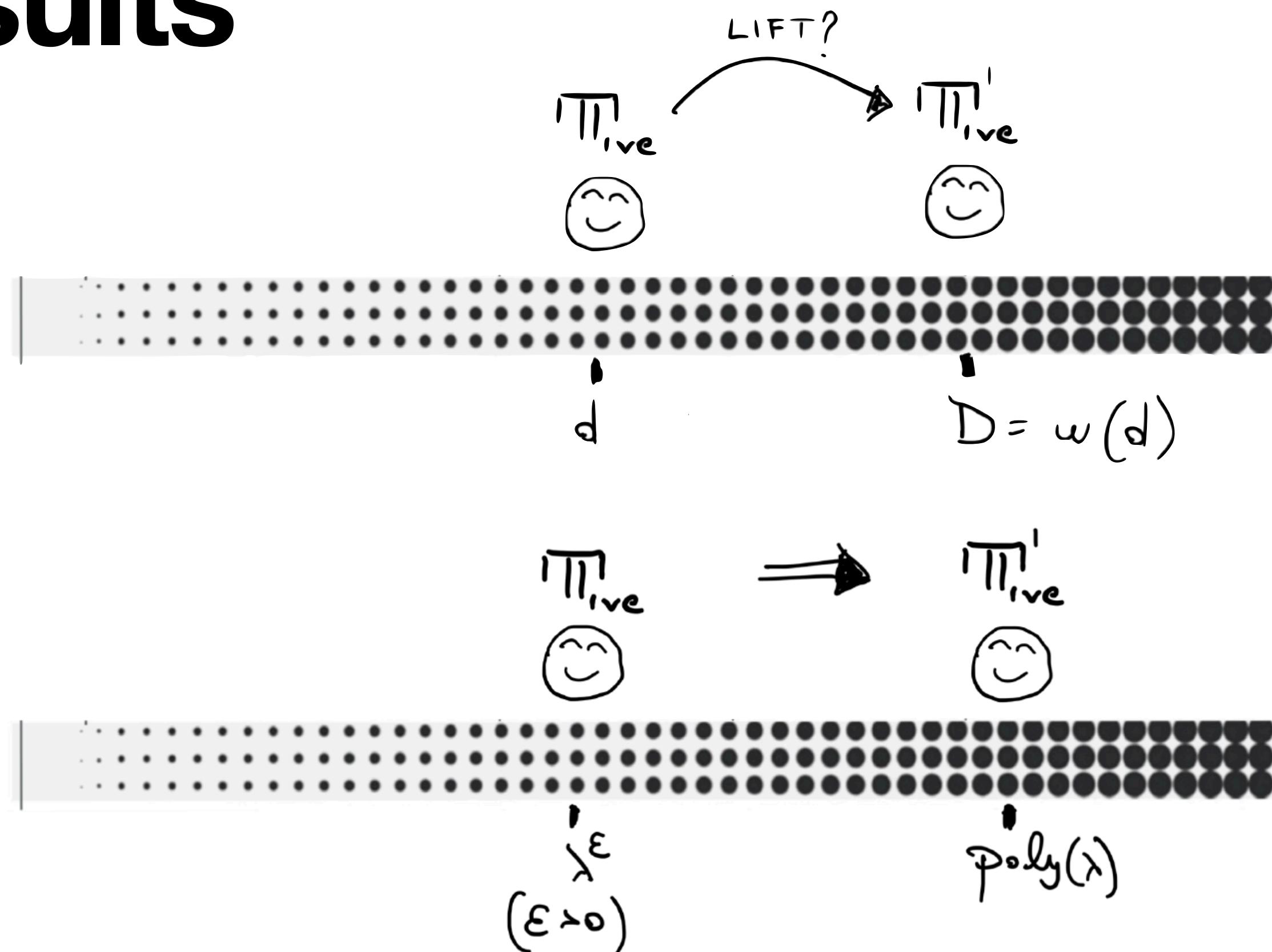
- black-box lifting results,
- and that preserve performance.



Our Results (continued)

NB: We are interested in:

- black-box lifting results,
- and that preserve performance.



Theorem (sublinear depths):

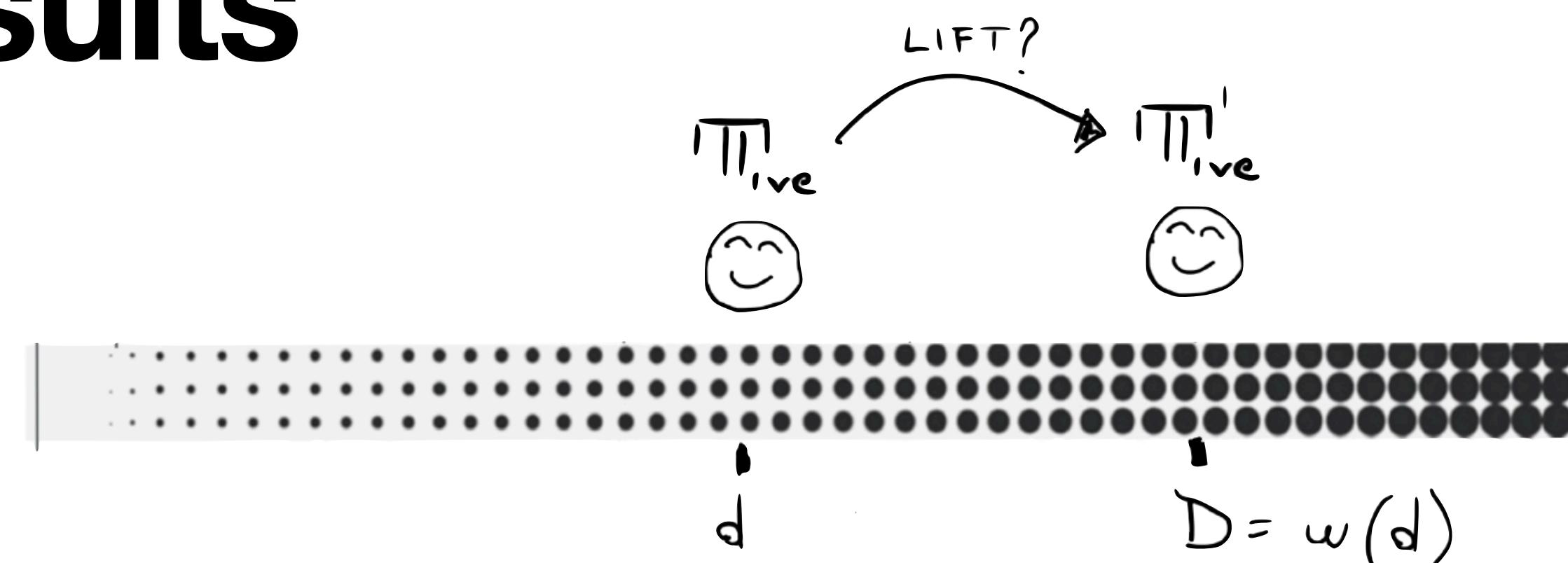
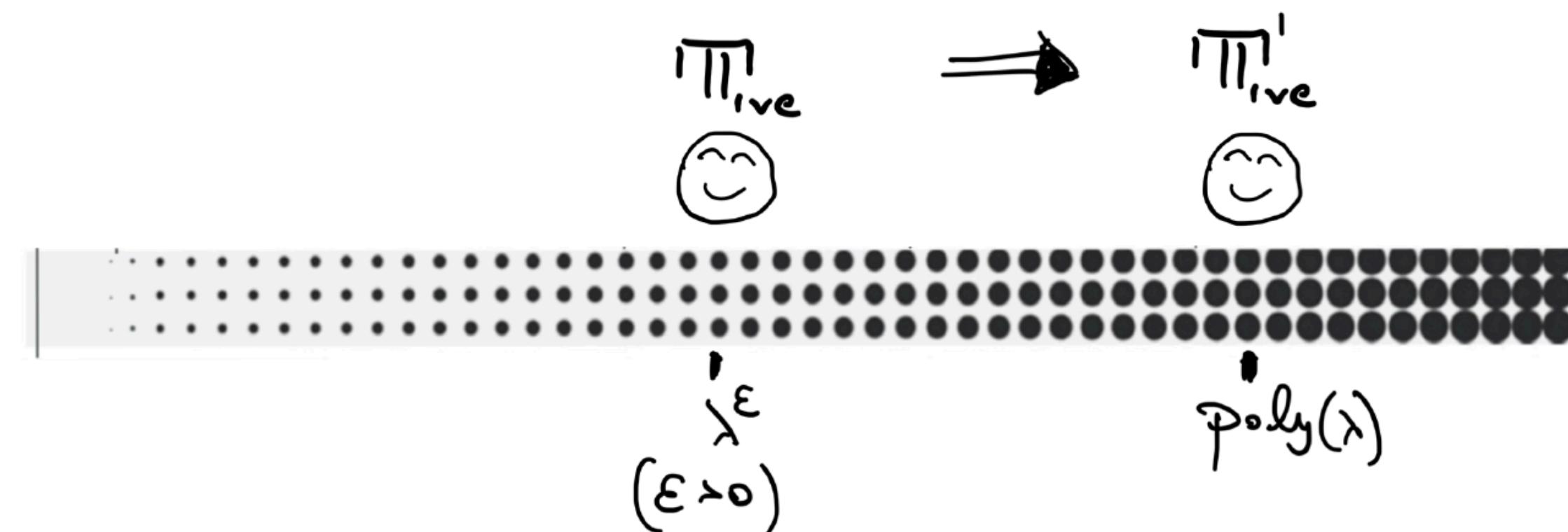
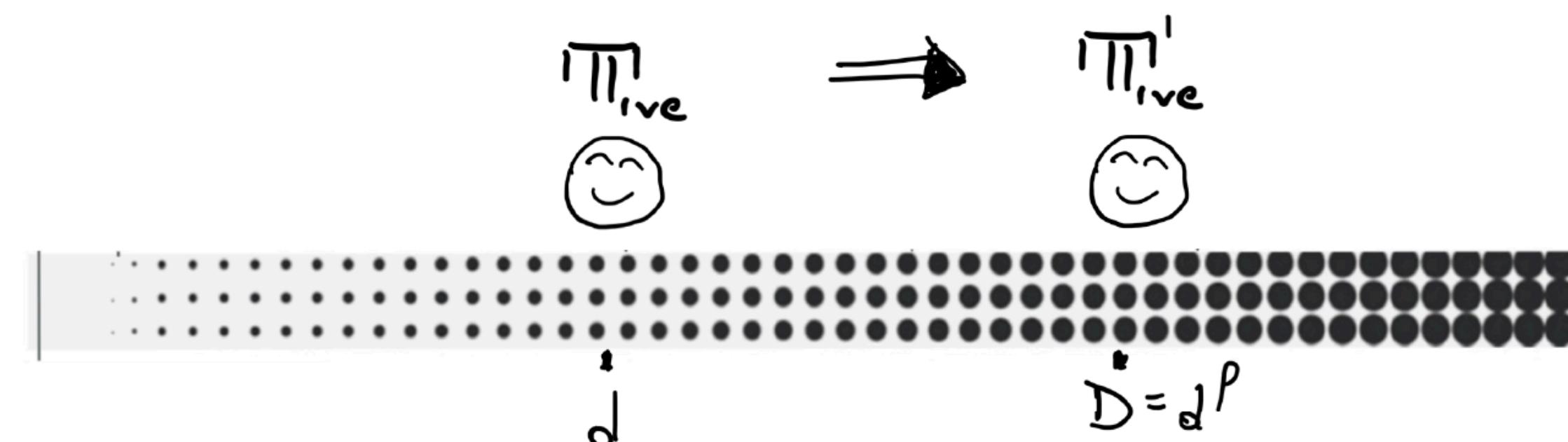
\exists IVC Π SND at depth λ^ε (for some $\varepsilon > 0$)
 $\Rightarrow \exists$ IVC Π' SND at arbitrary depth.

Overhead for P/V/proof size in Π' is $O_\lambda(1)$.

Our Results (continued)

NB: We are interested in:

- black-box lifting results,
- and that preserve performance.

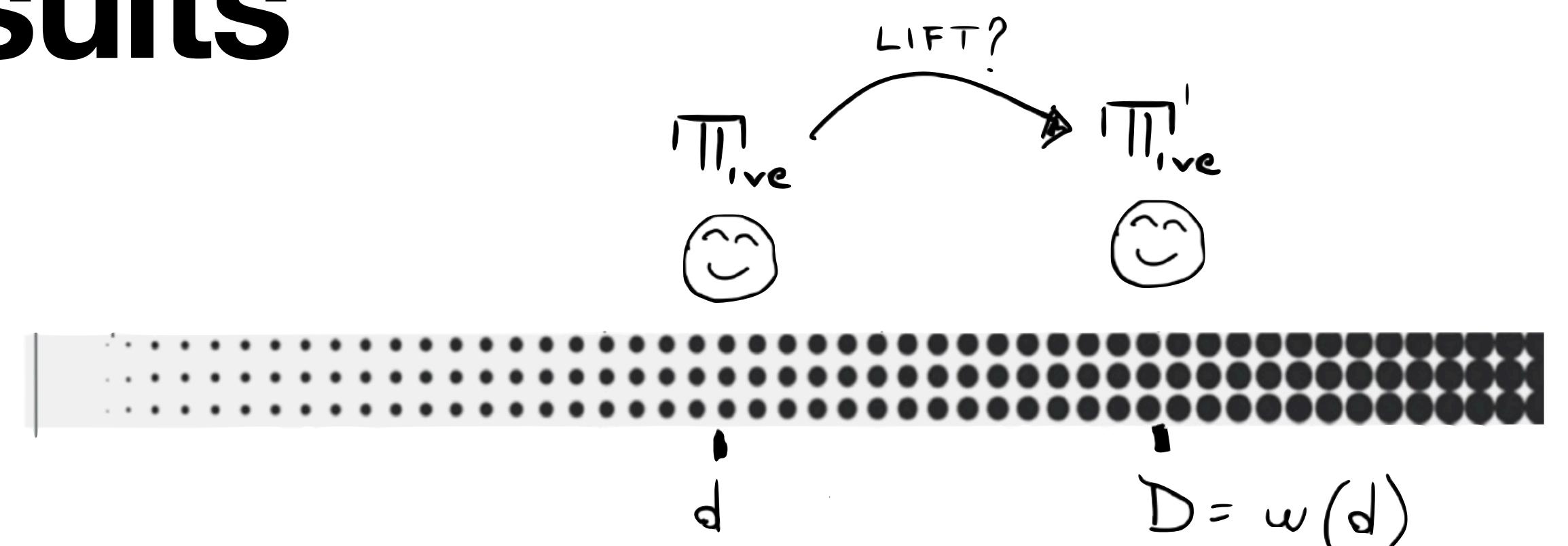
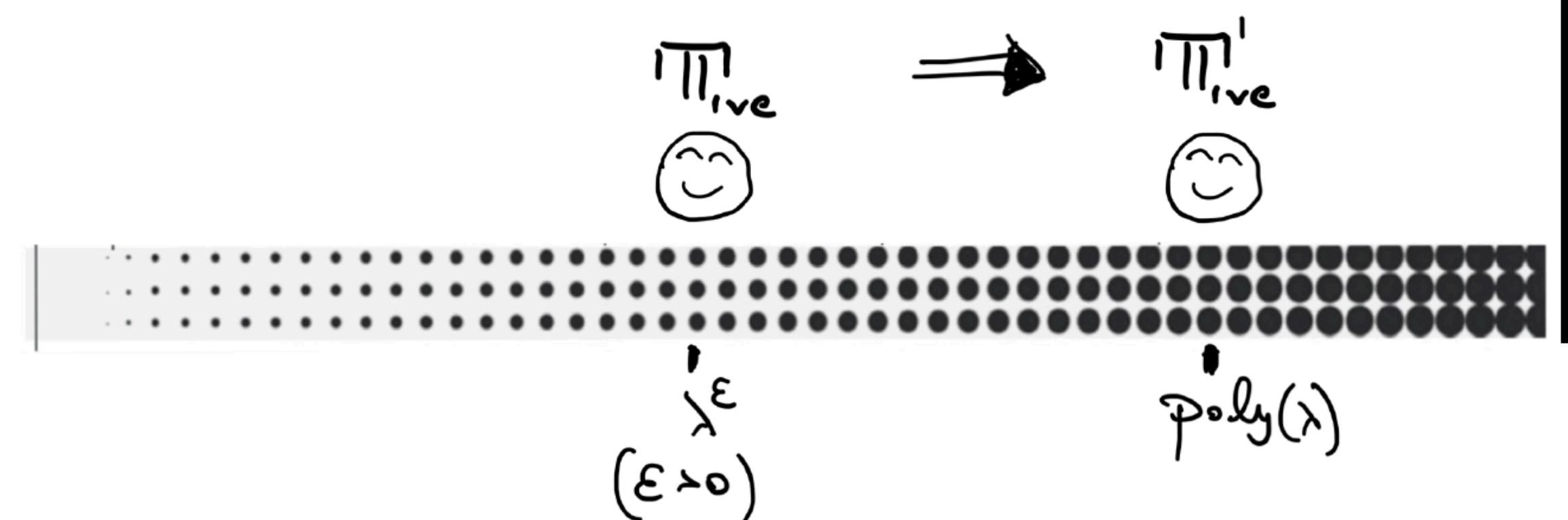
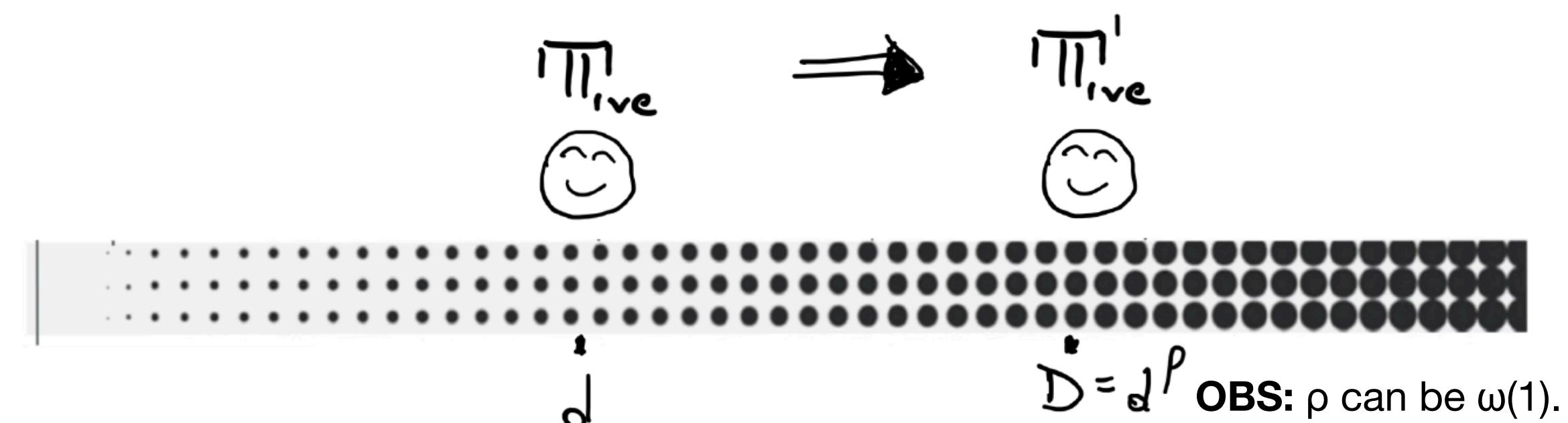


Theorem (sublinear depths):
 \exists IVC Π SND at depth λ^ε (for some $\varepsilon > 0$)
 $\Rightarrow \exists$ IVC Π' SND at arbitrary depth.
 Overhead for P/V/proof size in Π' is $O_\lambda(1)$.

Our Results (continued)

NB: We are interested in:

- black-box lifting results,
- and that preserve performance.



Theorem (sublinear depths):

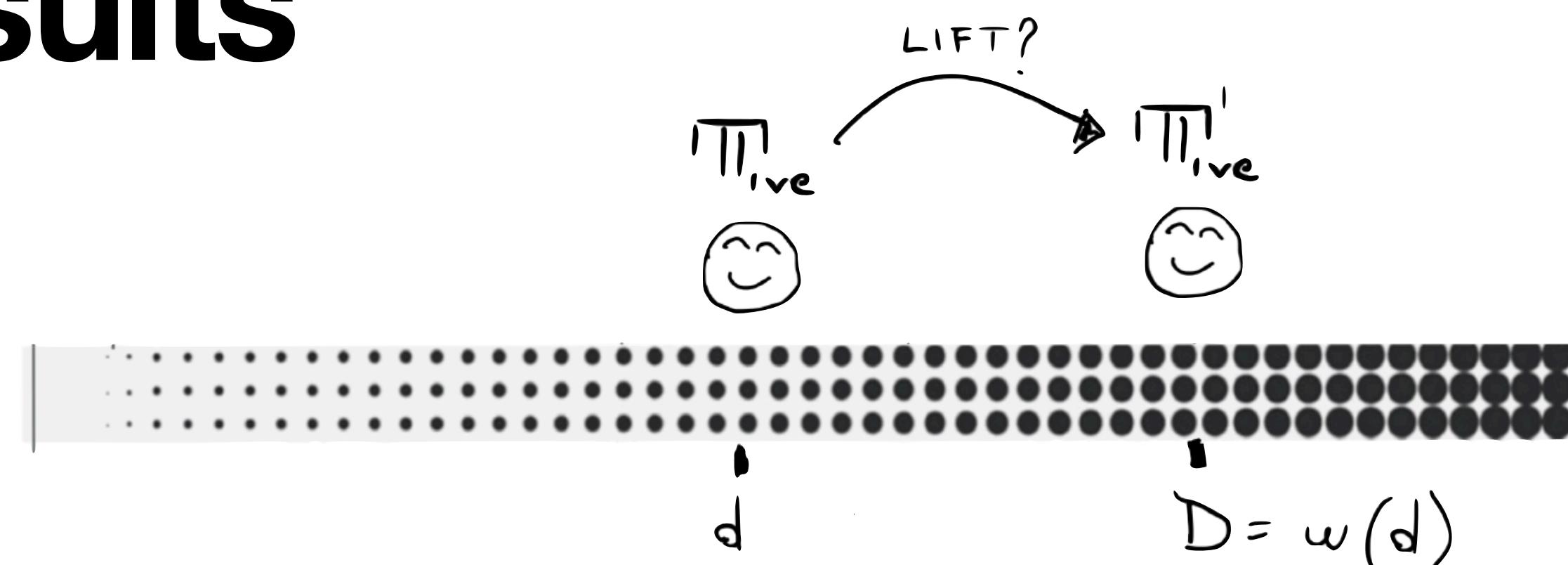
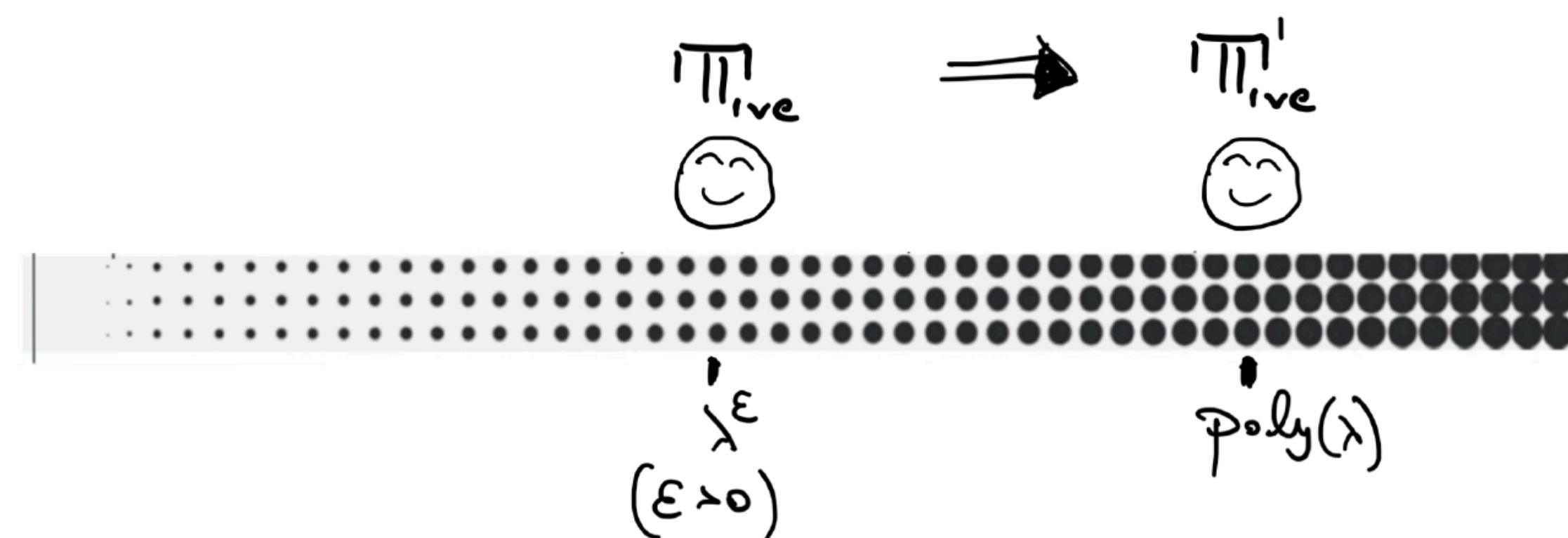
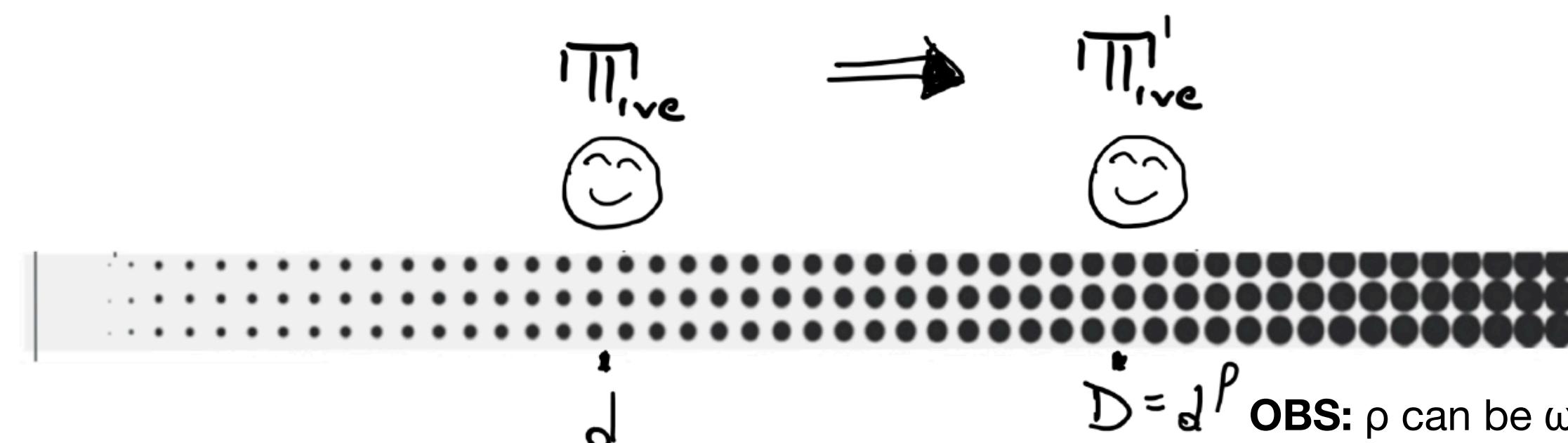
\exists IVC Π SND at depth λ^ε (for some $\varepsilon > 0$)
 $\Rightarrow \exists$ IVC Π' SND at arbitrary depth.

Overhead for P/V/proof size in Π' is $O_\lambda(1)$.

Our Results (continued)

NB: We are interested in:

- black-box lifting results,
- and that preserve performance.



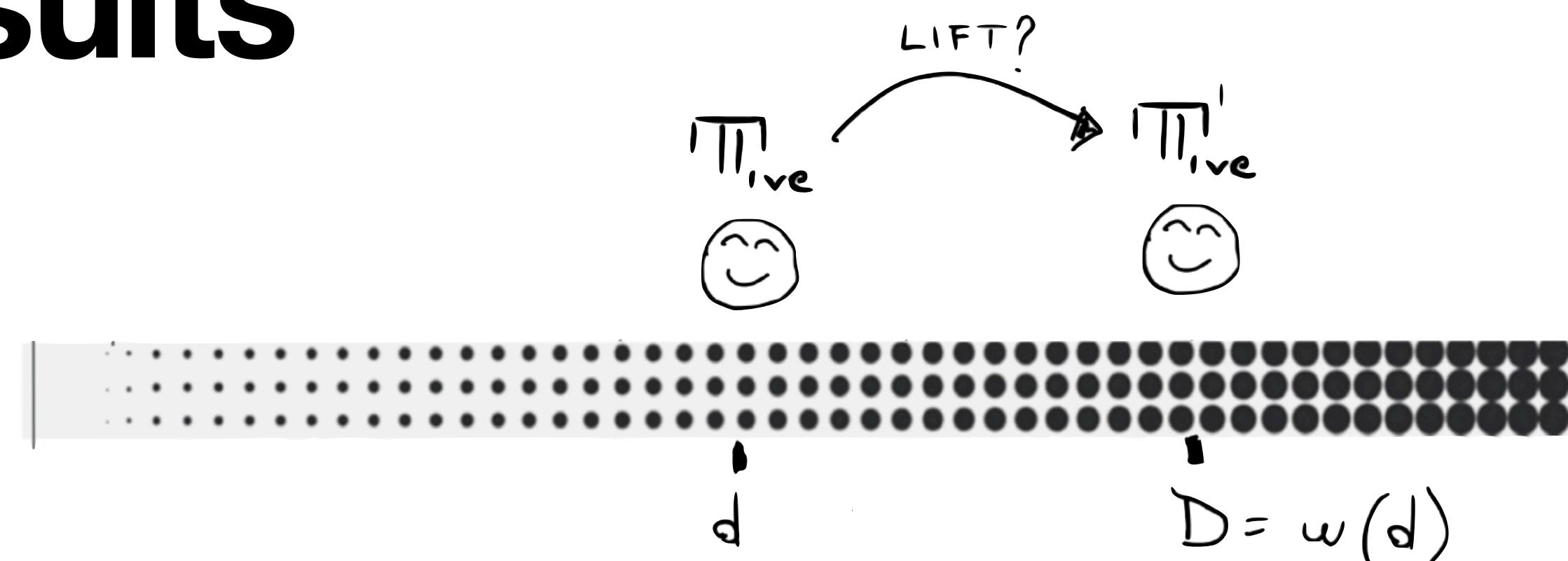
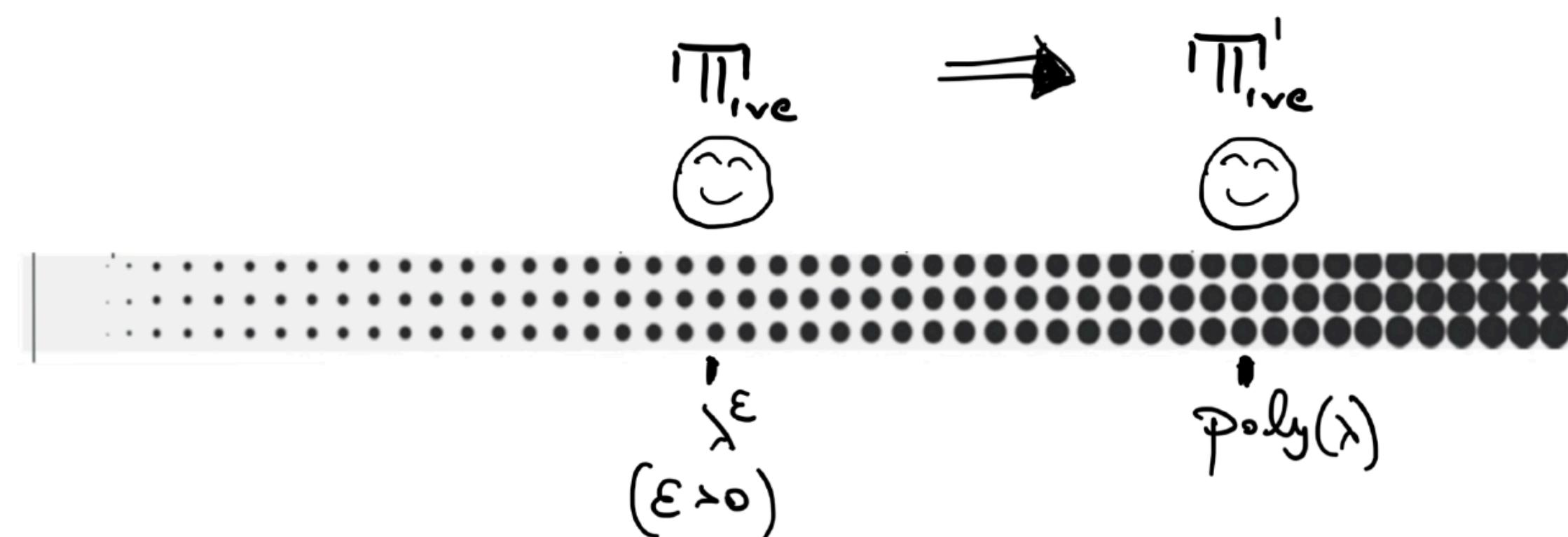
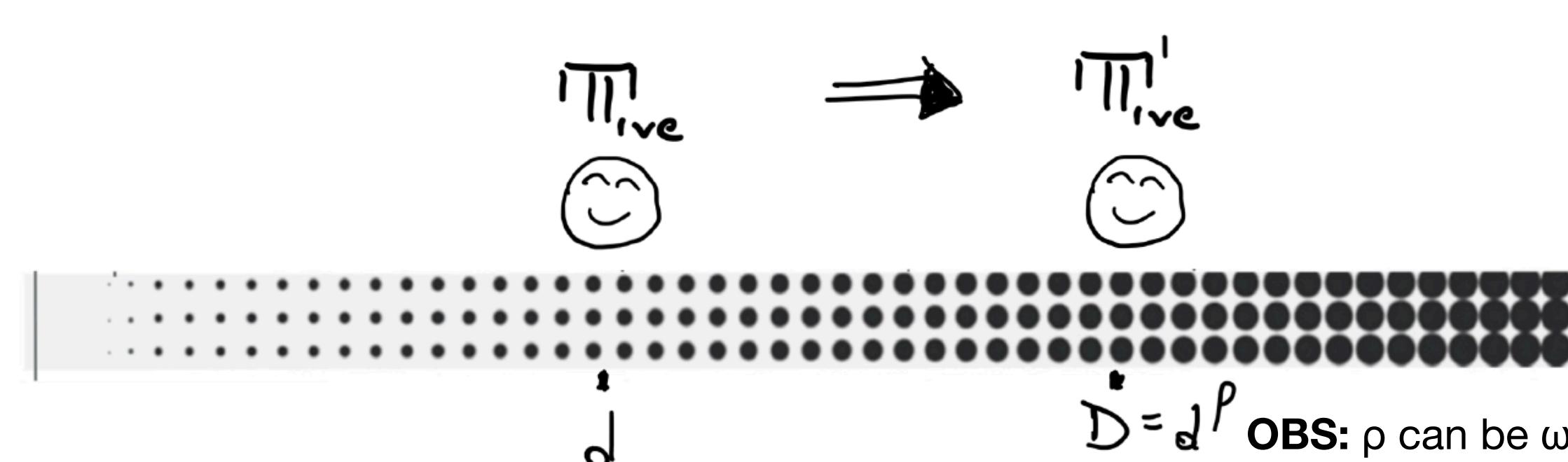
Theorem (sublinear depths):
 \exists IVC Π SND at depth λ^ε (for some $\varepsilon > 0$)
 $\Rightarrow \exists$ IVC Π' SND at arbitrary depth.
 Overhead for P/V/proof size in Π' is $O_\lambda(1)$.

Theorem (general lifting):
 \exists IVC Π SND at depth d
 $\Rightarrow \exists$ IVC Π' SND at depth $D = d^\rho$.
 Overhead* for P/V/proof size in Π' is $O_\lambda(\rho)$

Our Results (continued)

NB: We are interested in:

- black-box lifting results,
- and that preserve performance.



Theorem (sublinear depths):
 \exists IVC Π SND at depth λ^ε (for some $\varepsilon > 0$)
 $\Rightarrow \exists$ IVC Π' SND at arbitrary depth.
 Overhead for P/V/proof size in Π' is $O_\lambda(1)$.

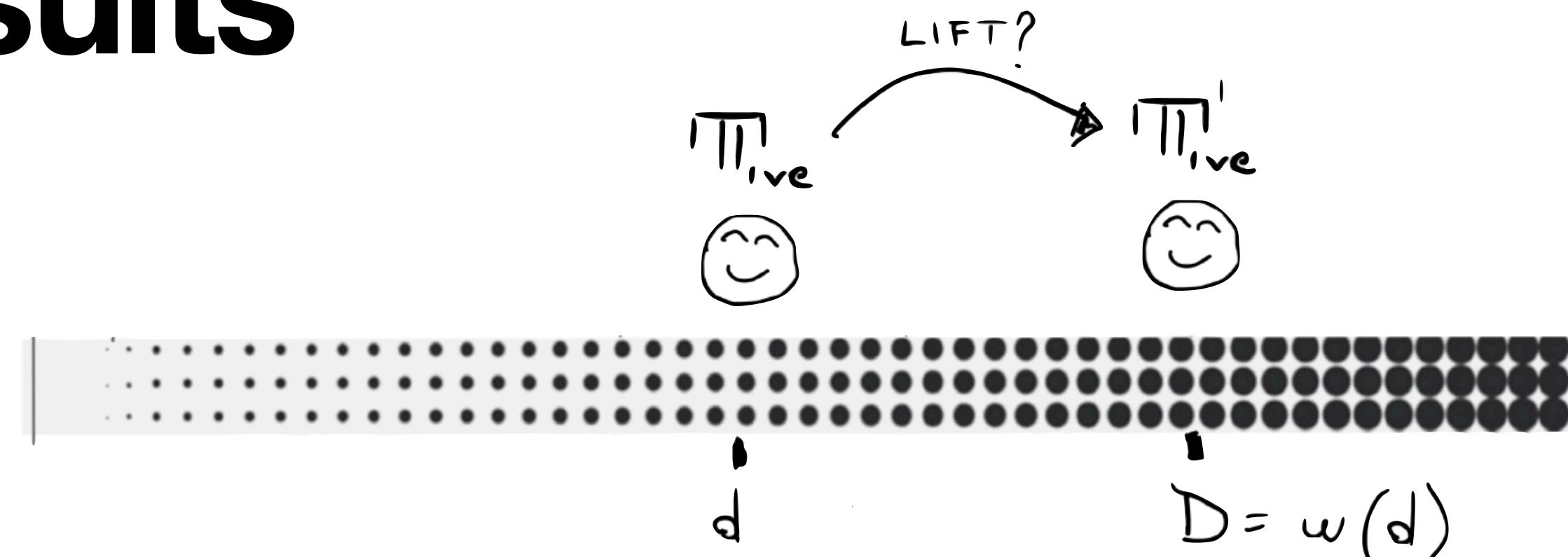
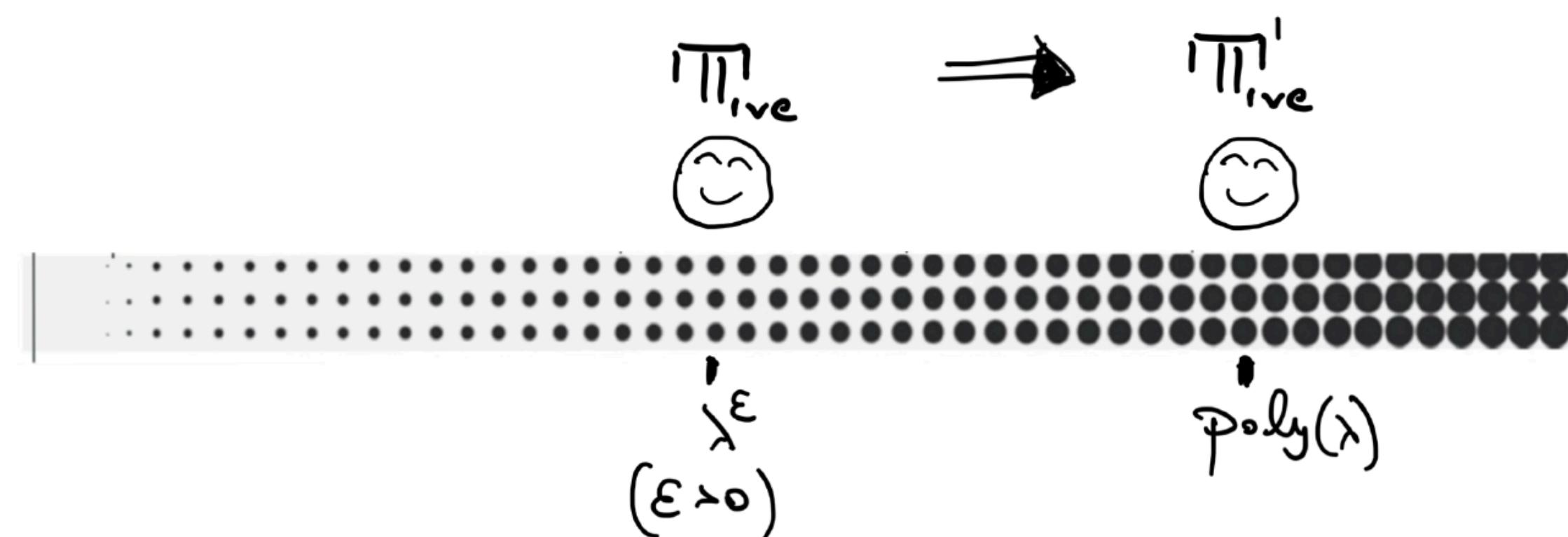
Theorem (general lifting):
 \exists IVC Π SND at depth d
 $\Rightarrow \exists$ IVC Π' SND at depth $D = d^\rho$.
 Overhead* for P/V/proof size in Π' is $O_\lambda(\rho)$

*: amortized prover time; applies for linear $T_P(\Pi)$
 (if not linear additional polylog overhead).

Our Results (continued)

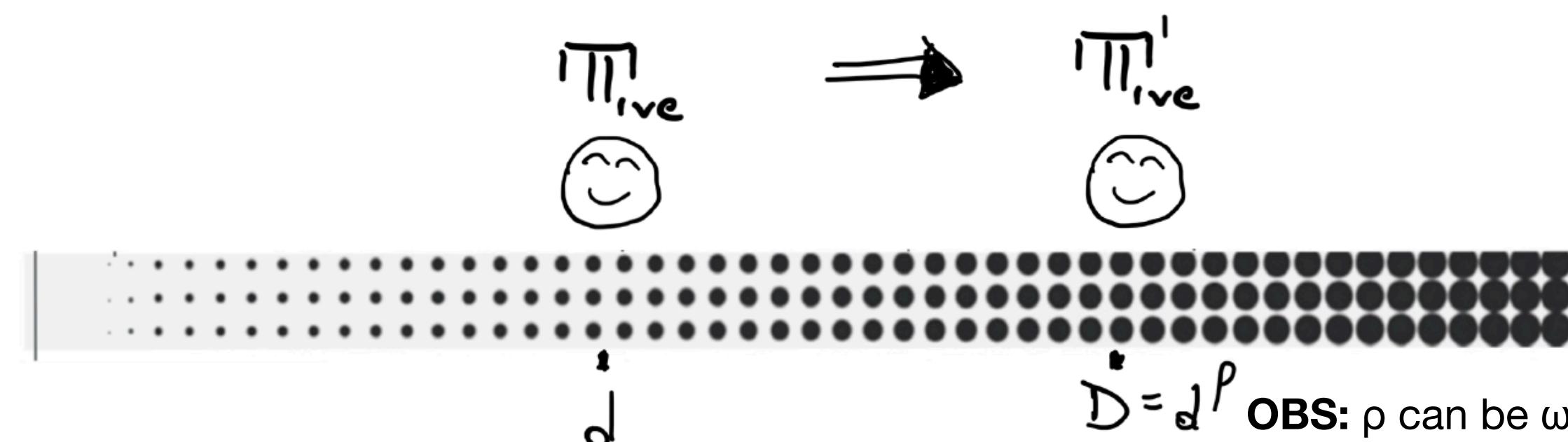
NB: We are interested in:

- black-box lifting results,
- and that preserve performance.



Corollary:

- IVC SND at $O(1) \Rightarrow$
- IVC Π' SND at depth $D = \text{poly.}$



Theorem (sublinear depths):

\exists IVC Π SND at depth λ^ε (for some $\varepsilon > 0$)
 $\Rightarrow \exists$ IVC Π' SND at arbitrary depth.

Overhead for P/V/proof size in Π' is $O_\lambda(1)$.

Theorem (general lifting):

\exists IVC Π SND at depth d
 $\Rightarrow \exists$ IVC Π' SND at depth $D = d^\rho$.

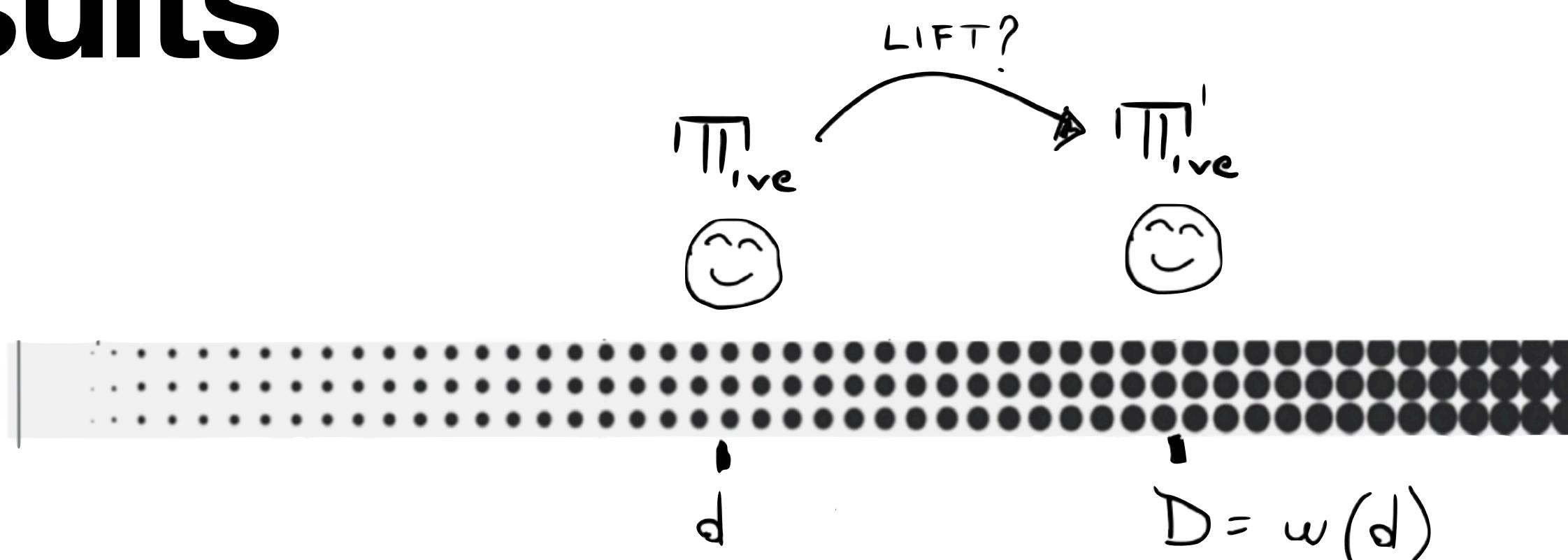
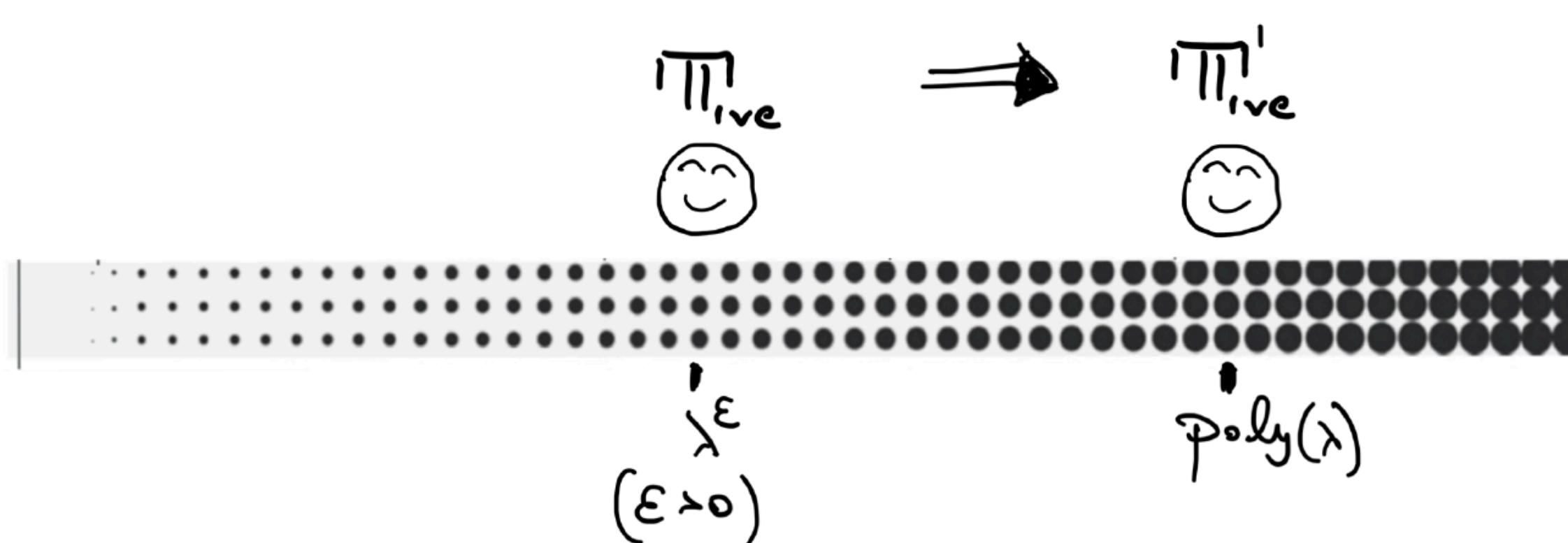
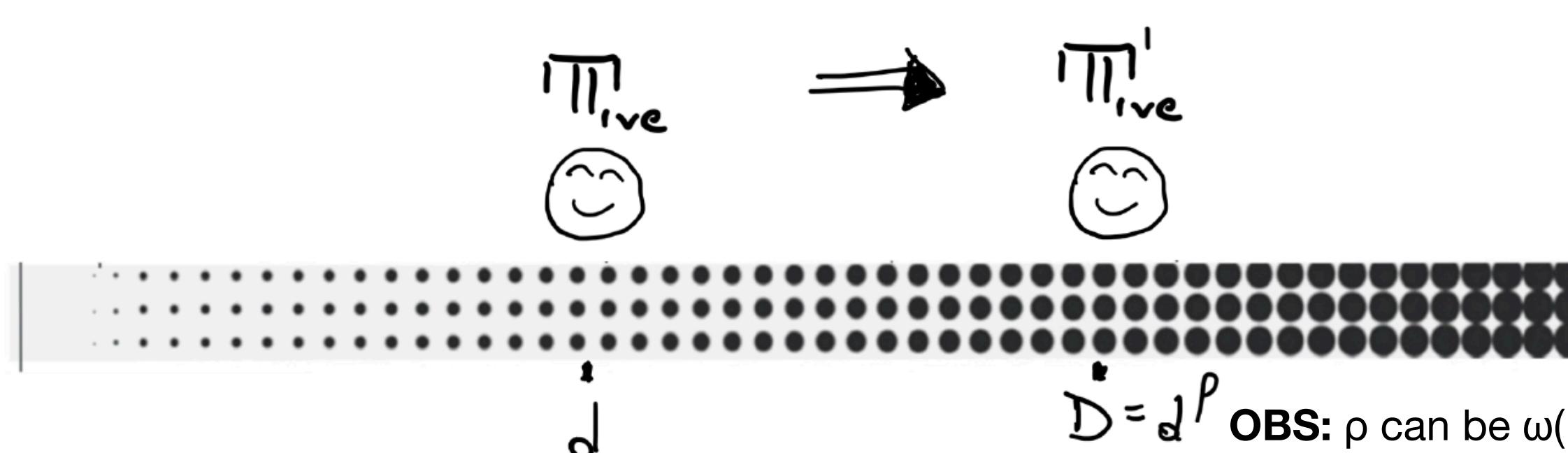
Overhead* for P/V/proof size in Π' is $O_\lambda(\rho)$

*: amortized prover time; applies for linear $T_P(\Pi)$
(if not linear additional polylog overhead).

Our Results (continued)

NB: We are interested in:

- black-box lifting results,
- and that preserve performance.



Theorem (sublinear depths):
 \exists IVC Π SND at depth λ^ε (for some $\varepsilon > 0$)
 $\Rightarrow \exists$ IVC Π' SND at arbitrary depth.
 Overhead for P/V/proof size in Π' is $O_\lambda(1)$.

Corollary:

- \exists IVC SND at $O(1) \Rightarrow$
- \exists IVC Π' SND at depth $D = \text{poly.}$

Special case: $d = O(1); \rho = O(\log \lambda)$

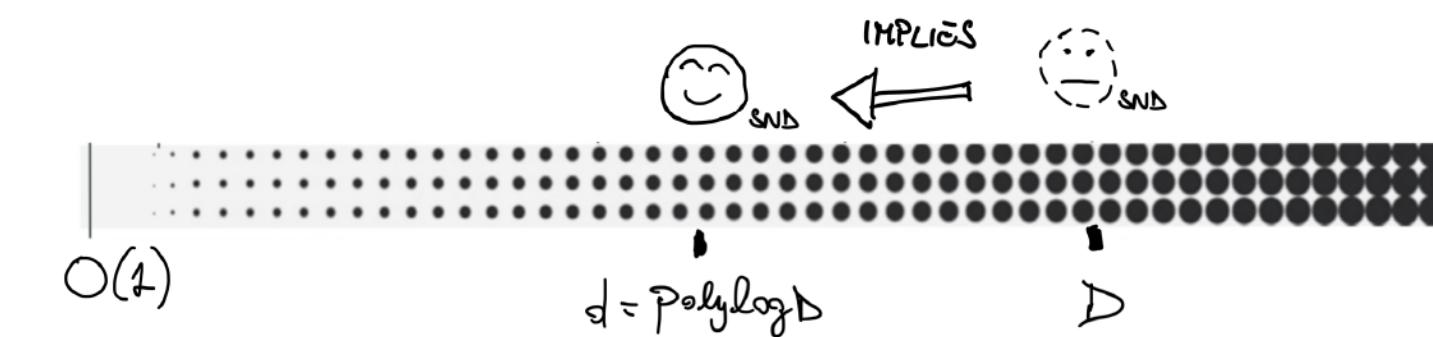
Theorem (general lifting):
 \exists IVC Π SND at depth d
 $\Rightarrow \exists$ IVC Π' SND at depth $D = d^\rho$.
 Overhead* for P/V/proof size in Π' is $O_\lambda(\rho)$

*: amortized prover time; applies for linear $T_P(\Pi)$
 (if not linear additional polylog overhead).

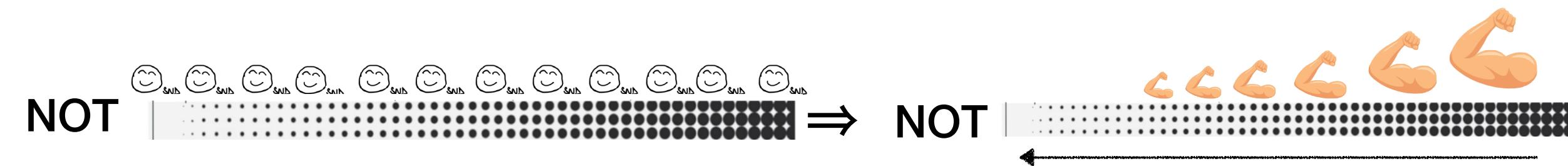
When Do Our Results Apply?

For what security notions do they hold?

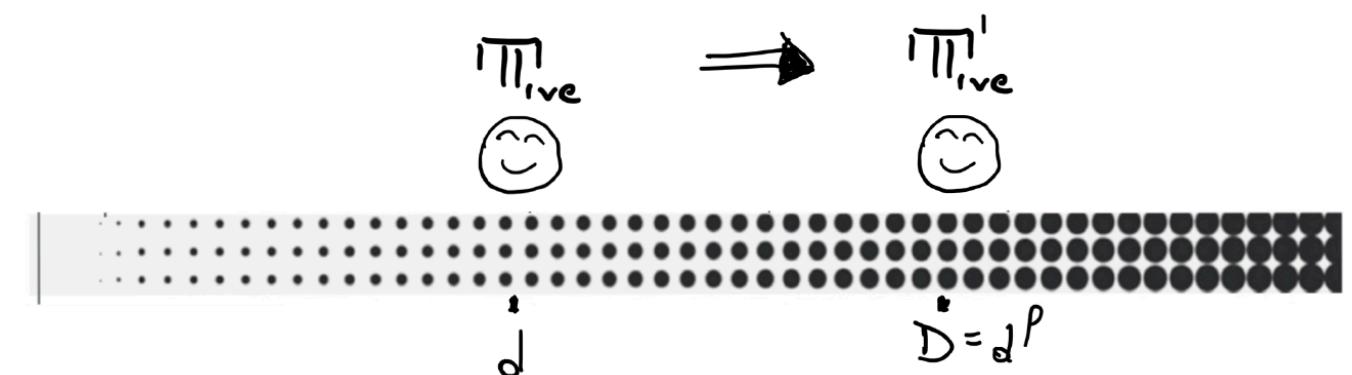
io-sec at $D \Rightarrow$ sec at $d = o(D)$



Insecure IVCs cannot exhibit graceful sec. degradation



Black-box lifting with low overhead

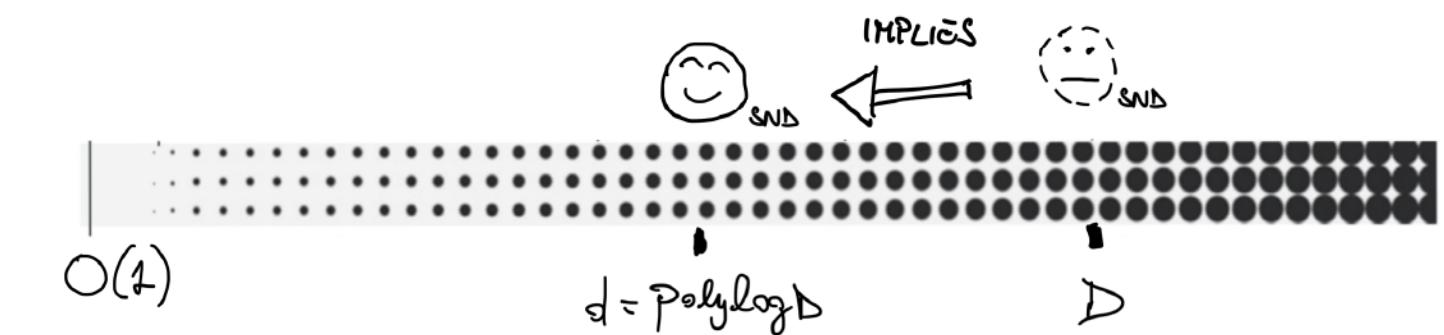


When Do Our Results Apply?

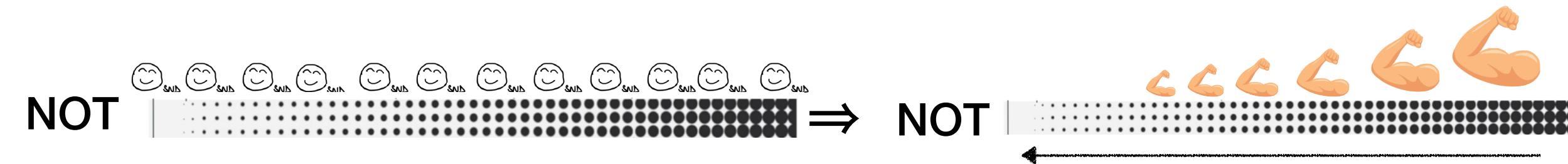
For what security notions do they hold?

- Soundness for deterministic and non-deterministic computations:

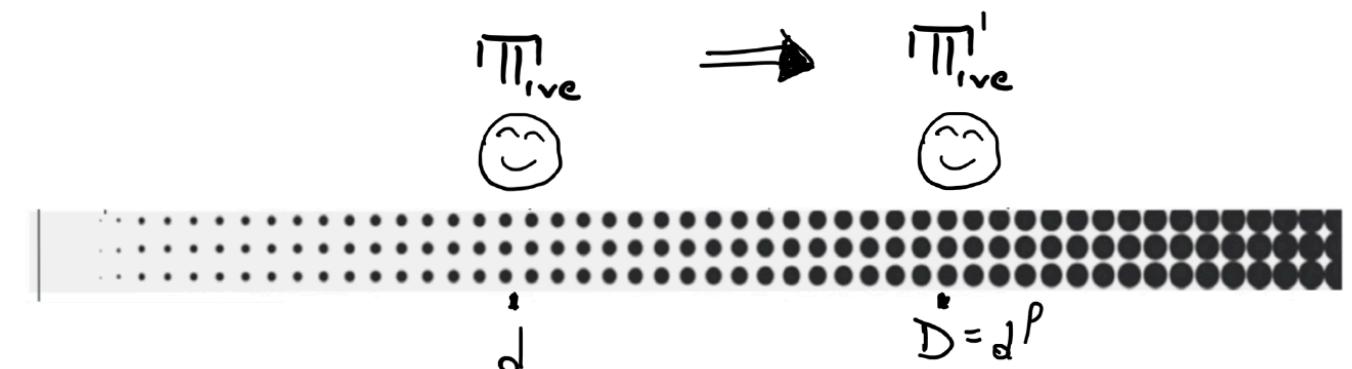
io-sec at $D \Rightarrow$ sec at $d = o(D)$



Insecure IVCs cannot exhibit graceful sec. degradation



Black-box lifting with low overhead

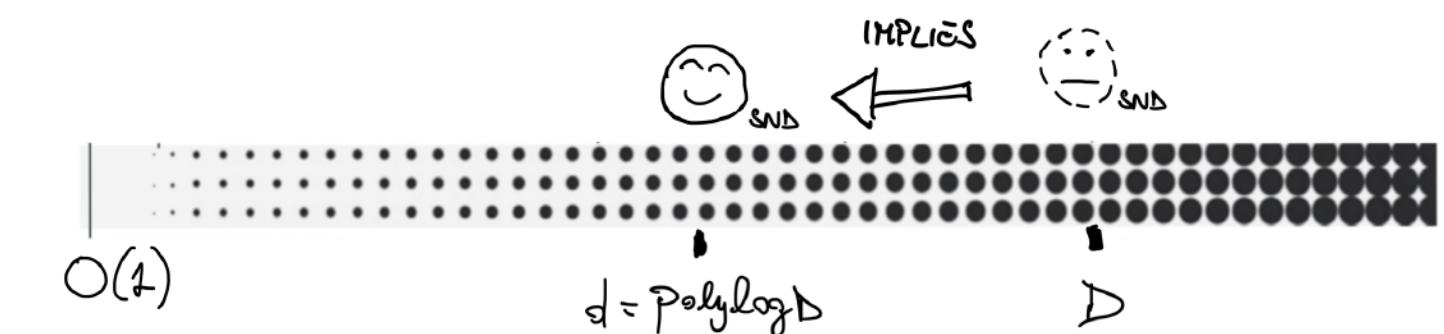


When Do Our Results Apply?

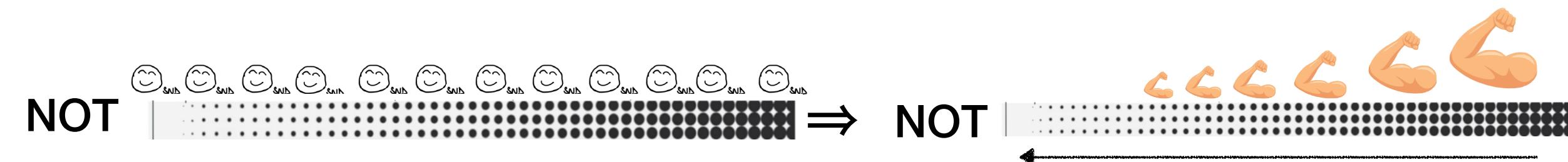
For what security notions do they hold?

- Soundness for deterministic and non-deterministic computations:
 - All results apply

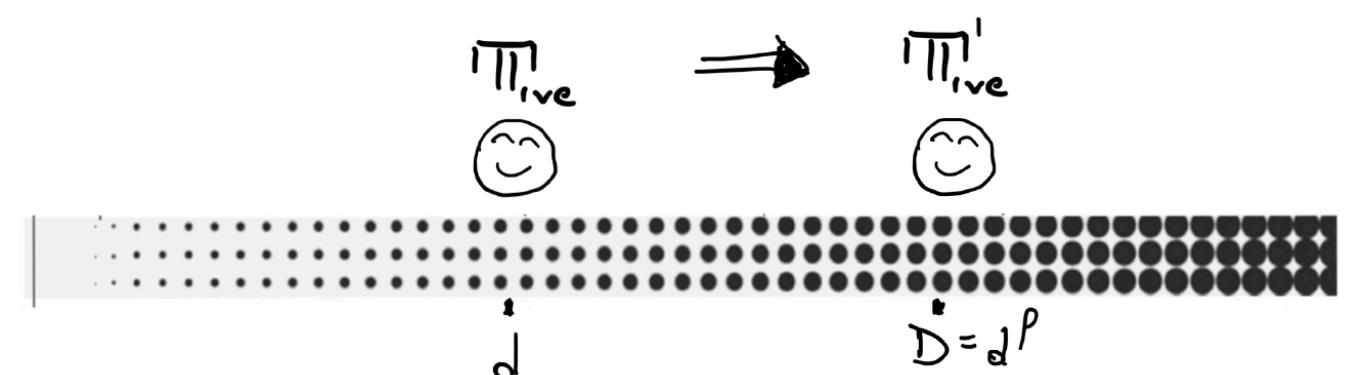
io-sec at $D \Rightarrow$ sec at $d = o(D)$



Insecure IVCs cannot exhibit graceful sec. degradation



Black-box lifting with low overhead

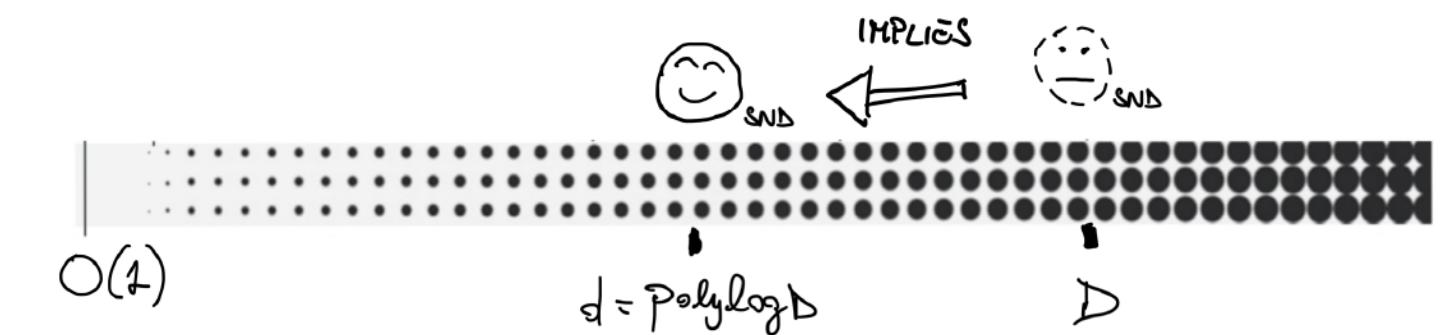


When Do Our Results Apply?

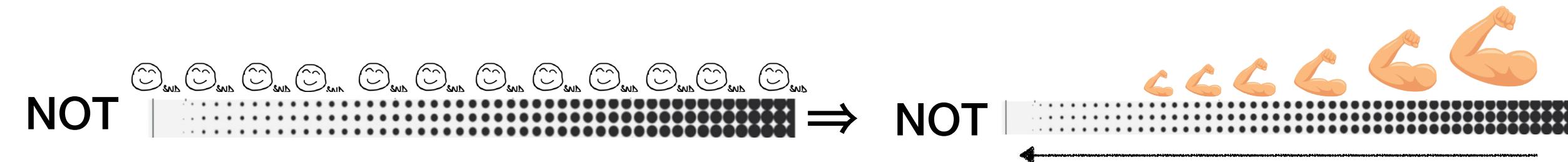
For what security notions do they hold?

- Soundness for deterministic and non-deterministic computations:
 - All results apply
- Evaluation Binding for Incremental Functional Commitments (next slides)

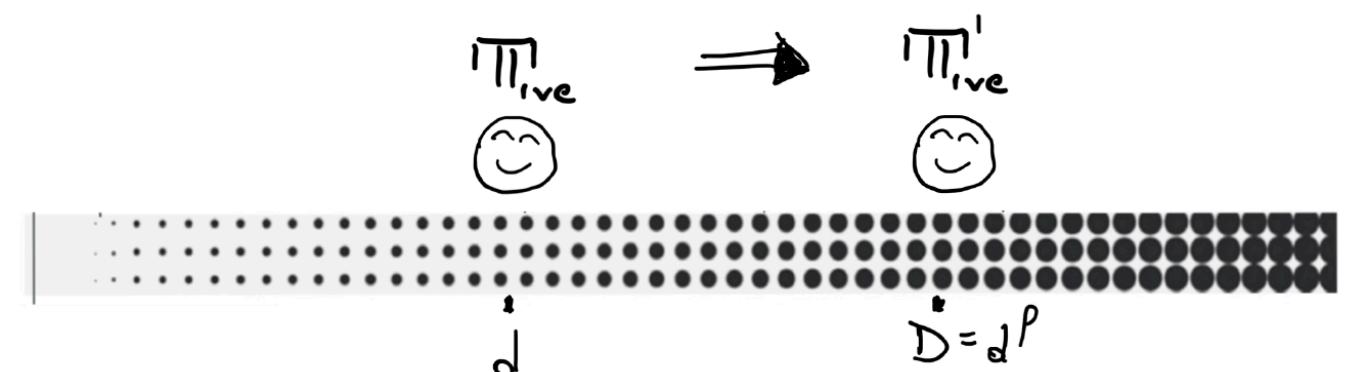
io-sec at $D \Rightarrow$ sec at $d = o(D)$



Insecure IVCs cannot exhibit graceful sec. degradation



Black-box lifting with low overhead

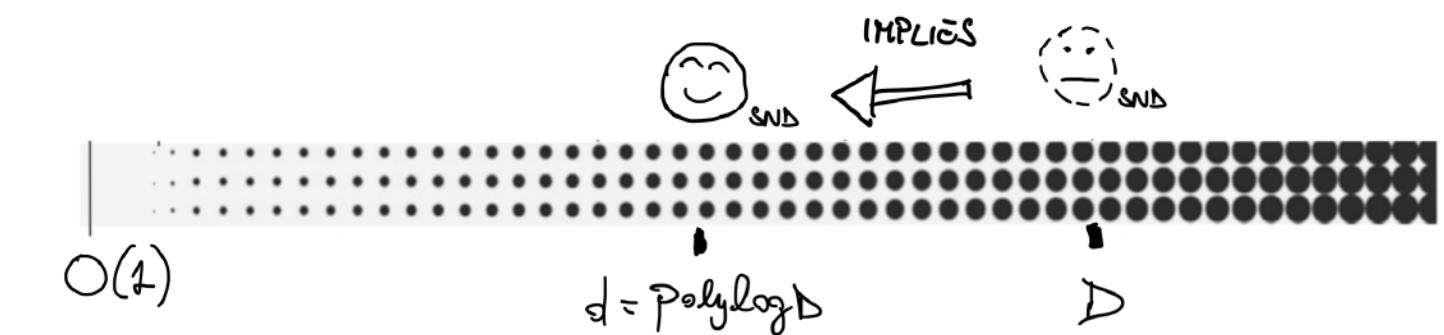


When Do Our Results Apply?

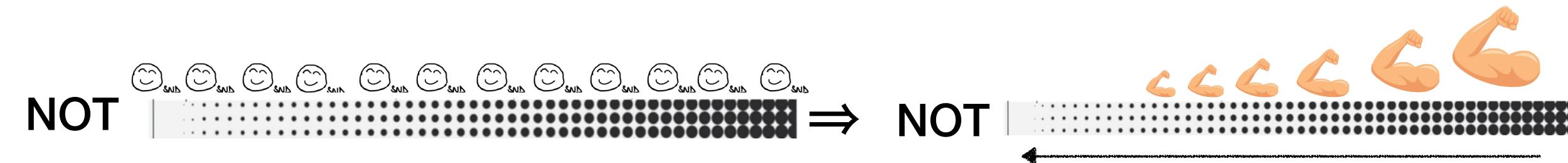
For what security notions do they hold?

- Soundness for deterministic and non-deterministic computations:
 - All results apply
- Evaluation Binding for Incremental Functional Commitments (next slides)
 - All results apply

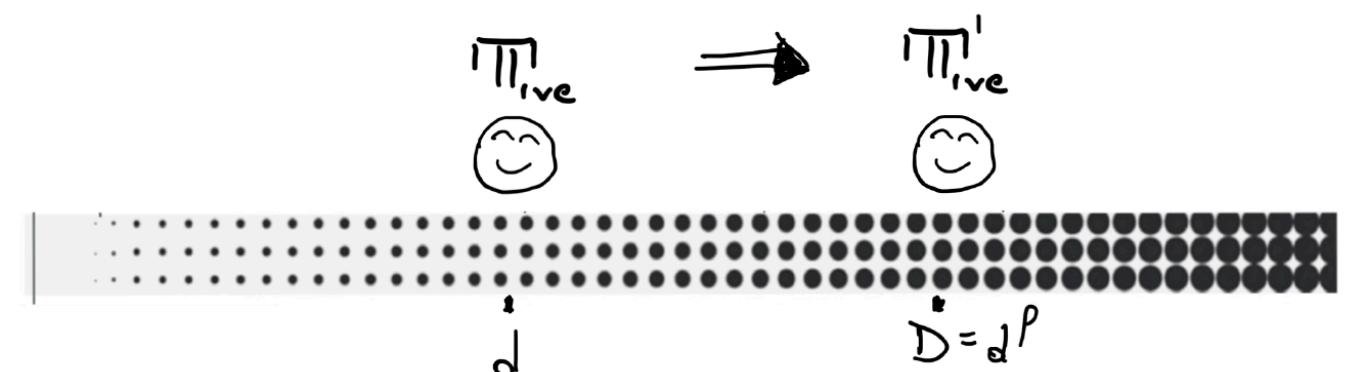
io-sec at $D \Rightarrow$ sec at $d = o(D)$



Insecure IVCs cannot exhibit graceful sec. degradation



Black-box lifting with low overhead

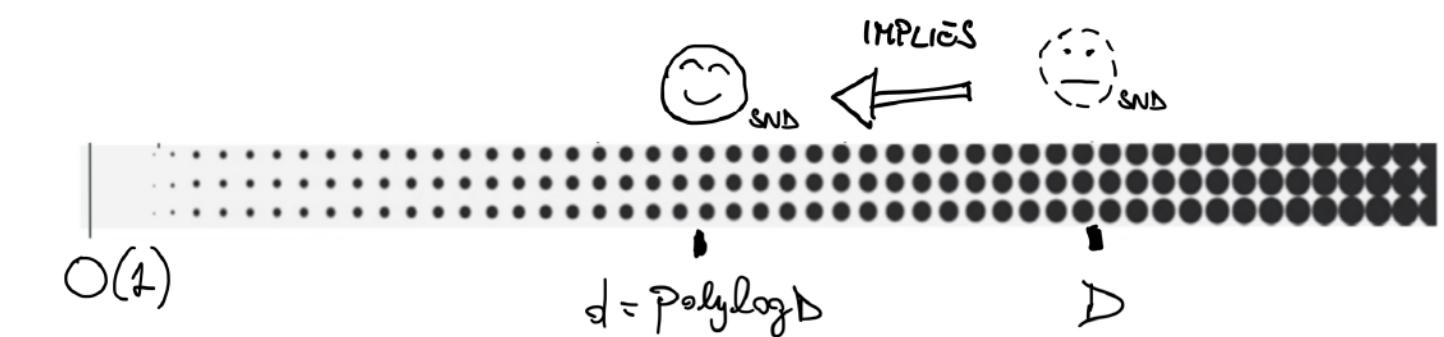


When Do Our Results Apply?

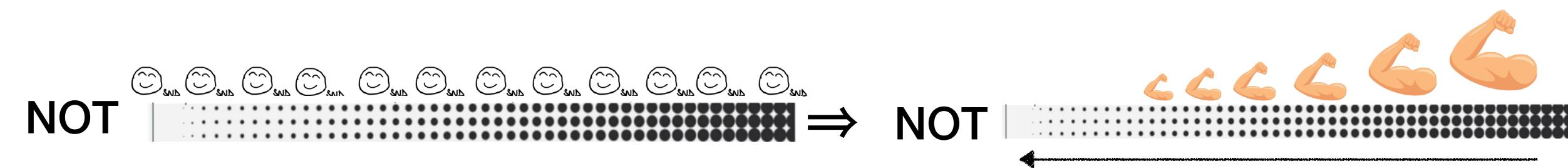
For what security notions do they hold?

- Soundness for deterministic and non-deterministic computations:
 - All results apply
- Evaluation Binding for Incremental Functional Commitments (next slides)
 - All results apply
- Extractability

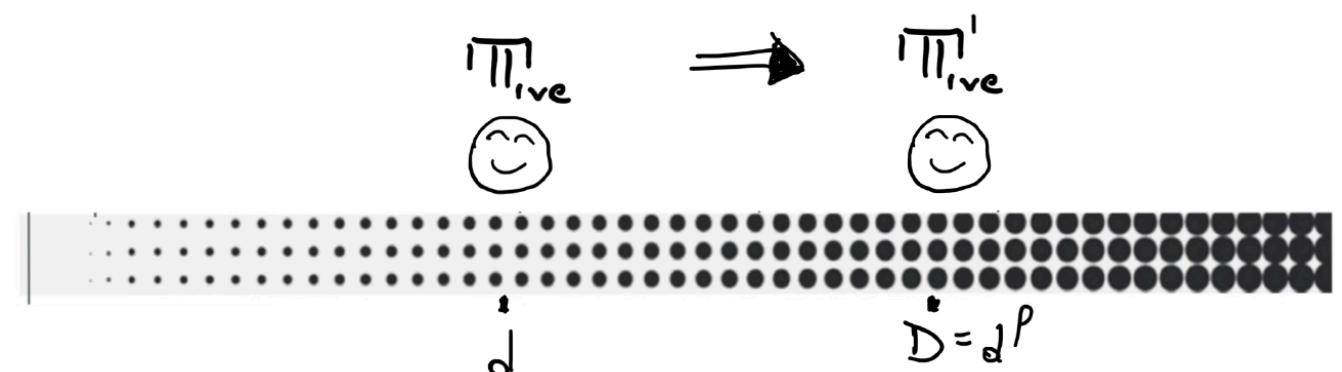
io-sec at $D \Rightarrow$ sec at $d = o(D)$



Insecure IVCs cannot exhibit graceful sec. degradation



Black-box lifting with low overhead

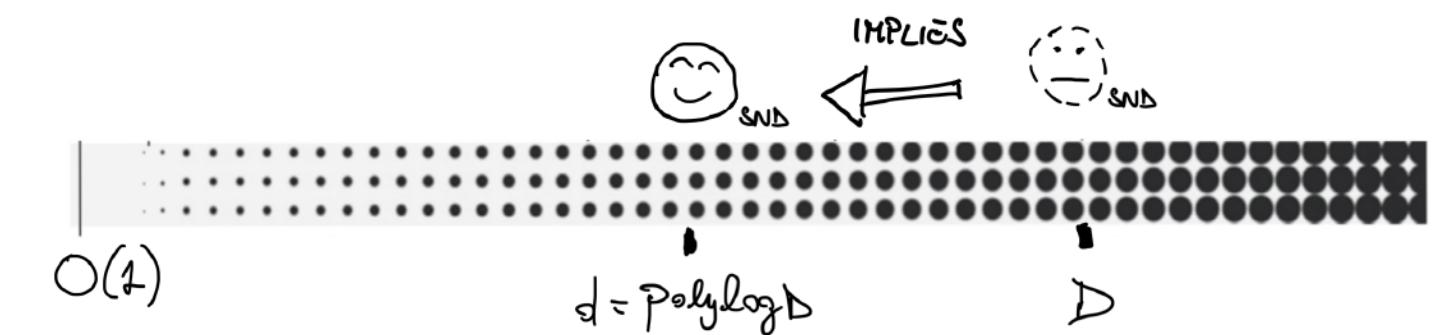


When Do Our Results Apply?

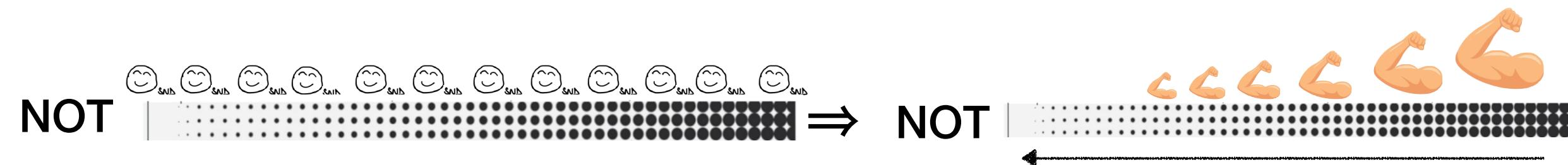
For what security notions do they hold?

- Soundness for deterministic and non-deterministic computations:
 - All results apply
- Evaluation Binding for Incremental Functional Commitments (next slides)
 - All results apply
- Extractability
 - $[\text{io-sec at } D \Rightarrow \text{sec at } d = o(D)] + [\text{black-box lifting}]$, both apply

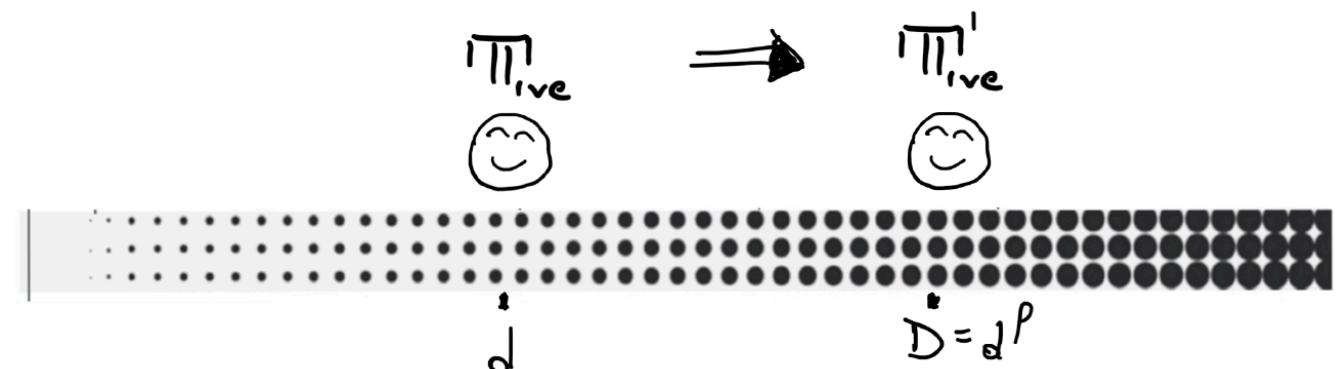
io-sec at $D \Rightarrow \text{sec at } d = o(D)$



Insecure IVCs cannot exhibit graceful sec. degradation



Black-box lifting with low overhead

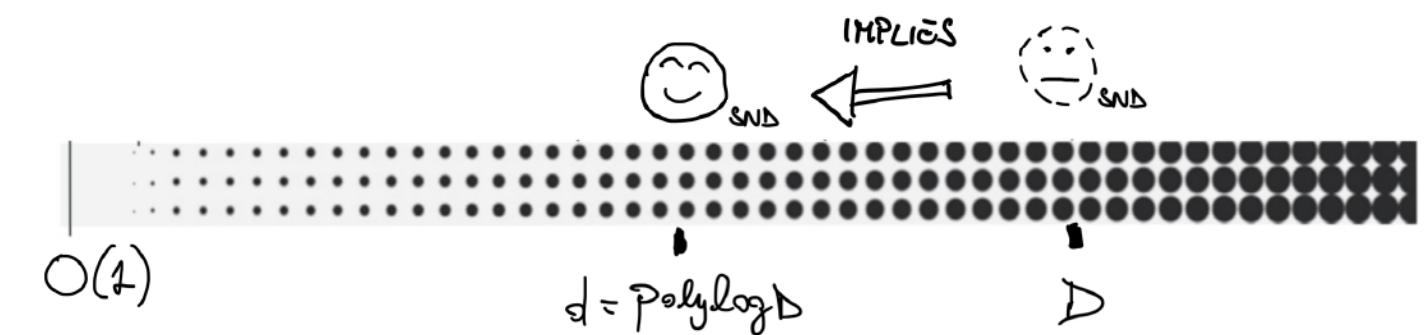


When Do Our Results Apply?

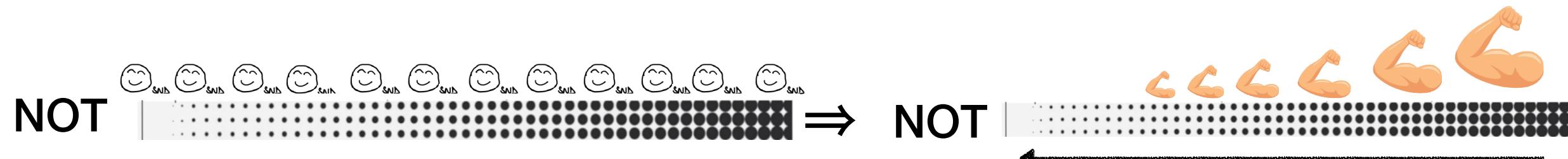
For what security notions do they hold?

- Soundness for deterministic and non-deterministic computations:
 - All results apply
- Evaluation Binding for Incremental Functional Commitments (next slides)
 - All results apply
- Extractability
 - $[\text{io-sec at } D \Rightarrow \text{sec at } d = o(D)] + [\text{black-box lifting}]$, both apply
 - the result on graceful sec. degradation does not apply mostly because definitions do not translate immediately.

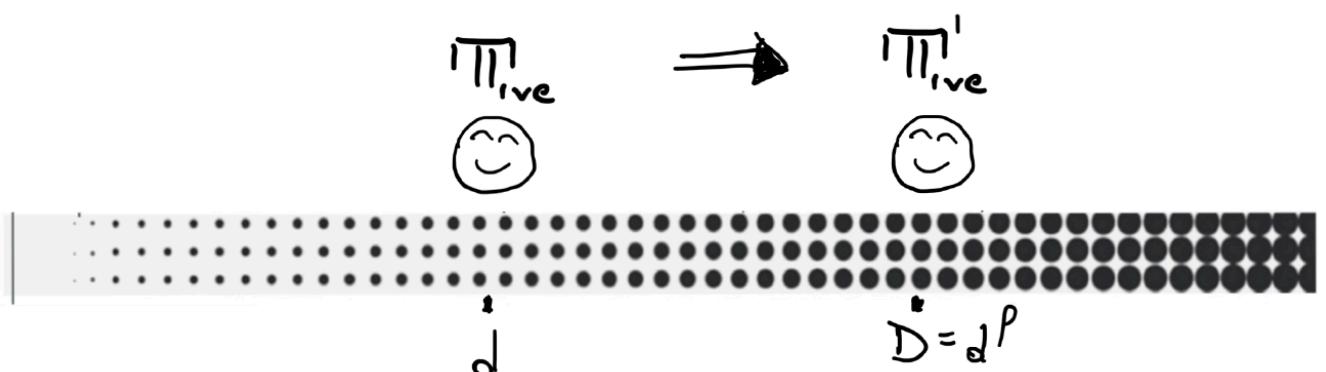
io-sec at $D \Rightarrow \text{sec at } d = o(D)$



Insecure IVCs cannot exhibit graceful sec. degradation



Black-box lifting with low overhead



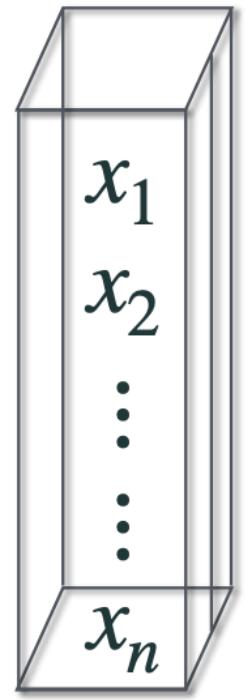
New Notion: Incremental Functional Commitments

What are Functional Commitments? (FC)

Server (Prover)

Client (Verifier)

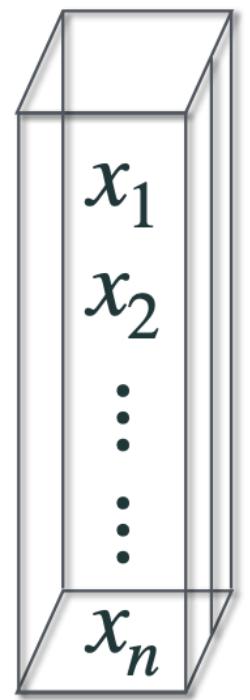
What are Functional Commitments? (FC)



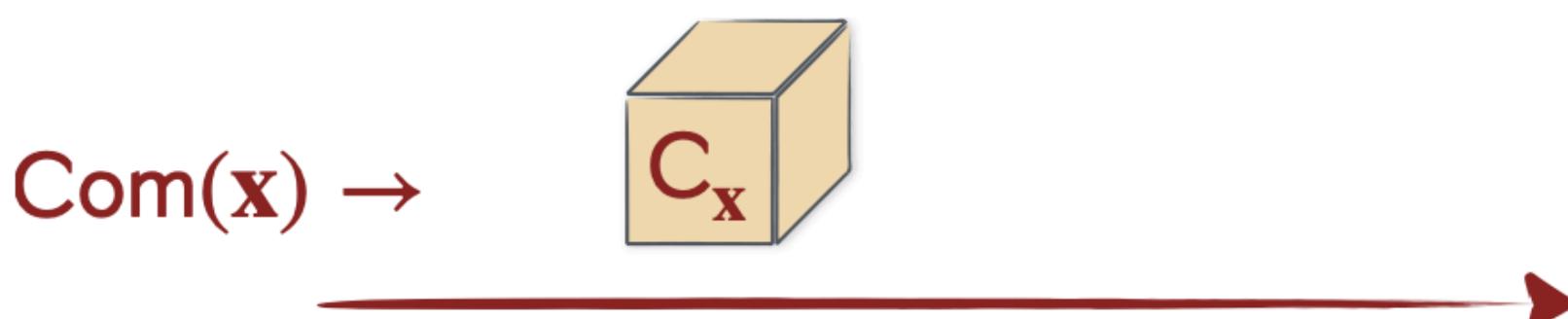
Server (Prover)

Client (Verifier)

What are Functional Commitments? (FC)



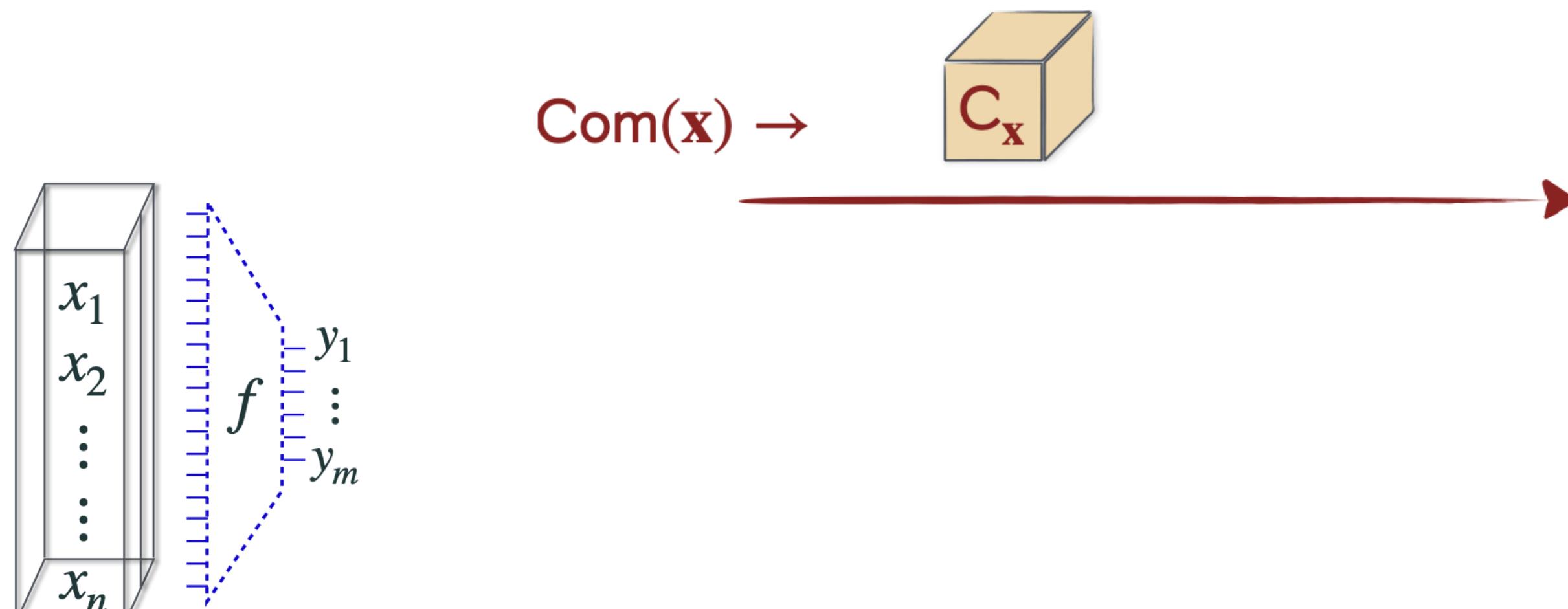
Server (Prover)



Client (Verifier)

What are Functional Commitments? (FC)

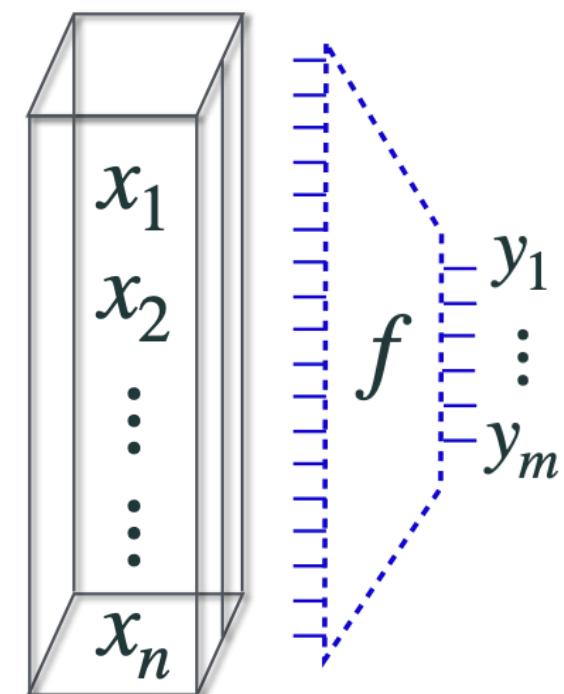
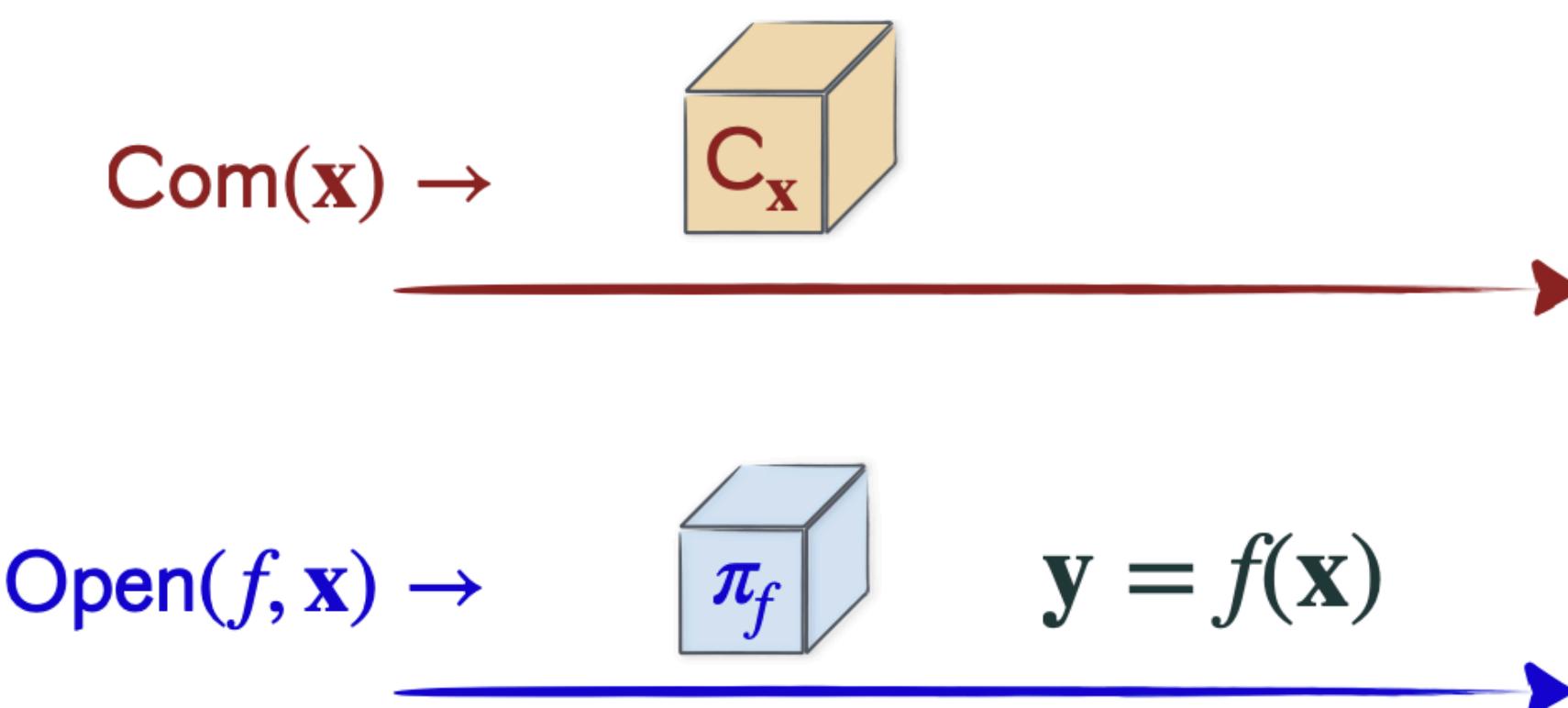
Server (Prover)



Client (Verifier)

What are Functional Commitments? (FC)

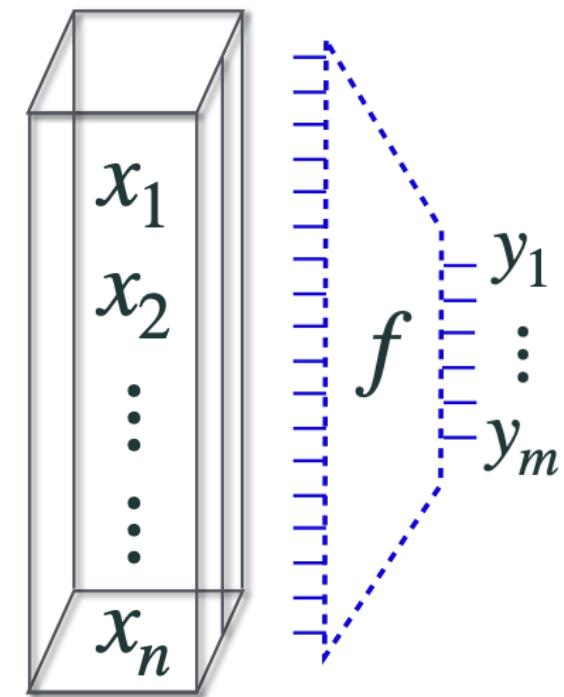
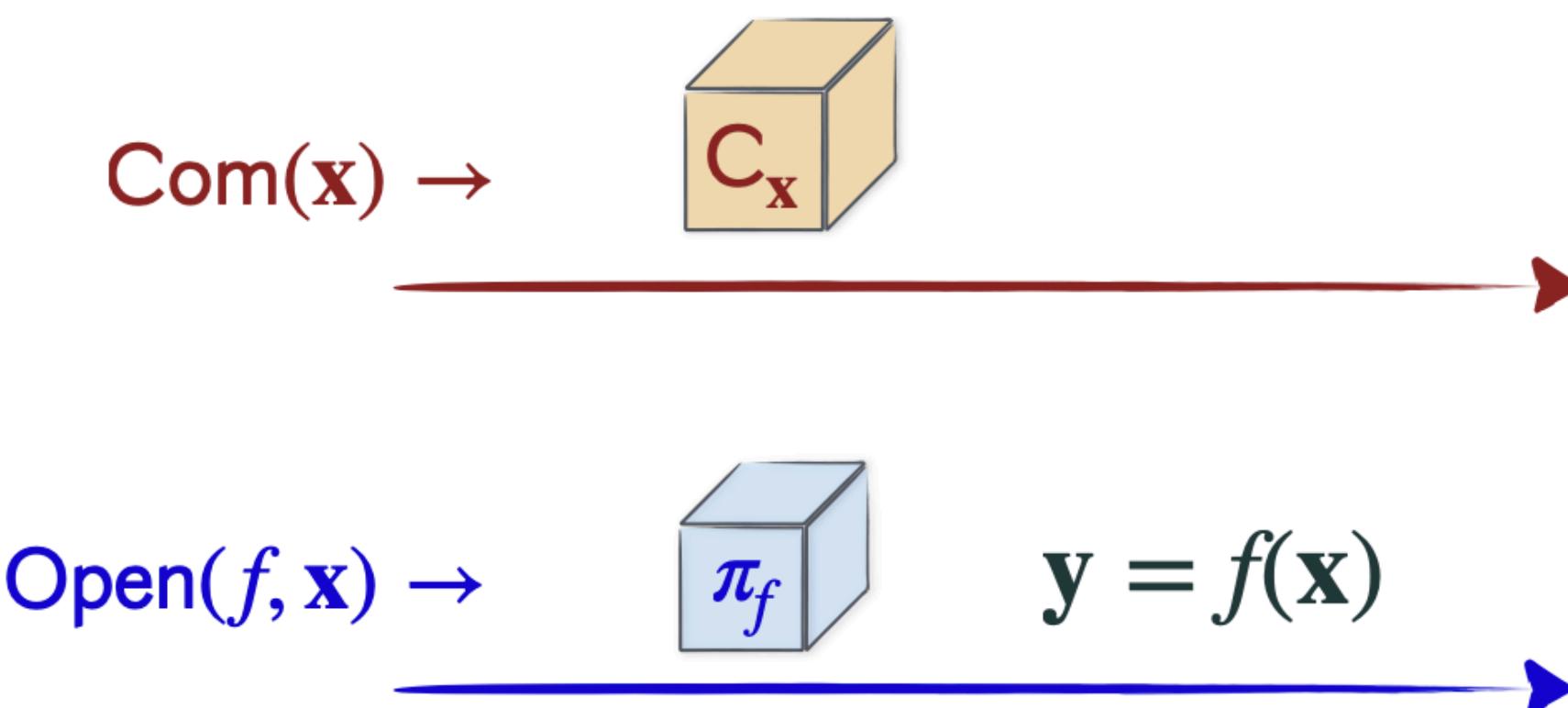
Server (Prover)



Client (Verifier)

What are Functional Commitments? (FC)

Server (Prover)

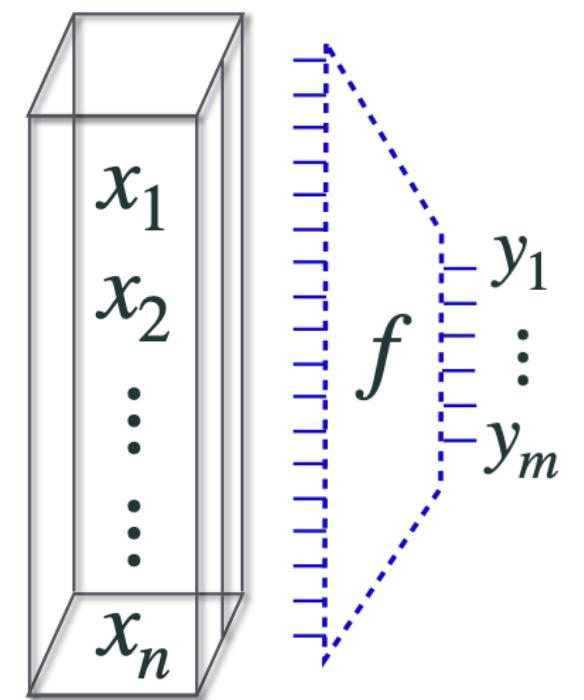
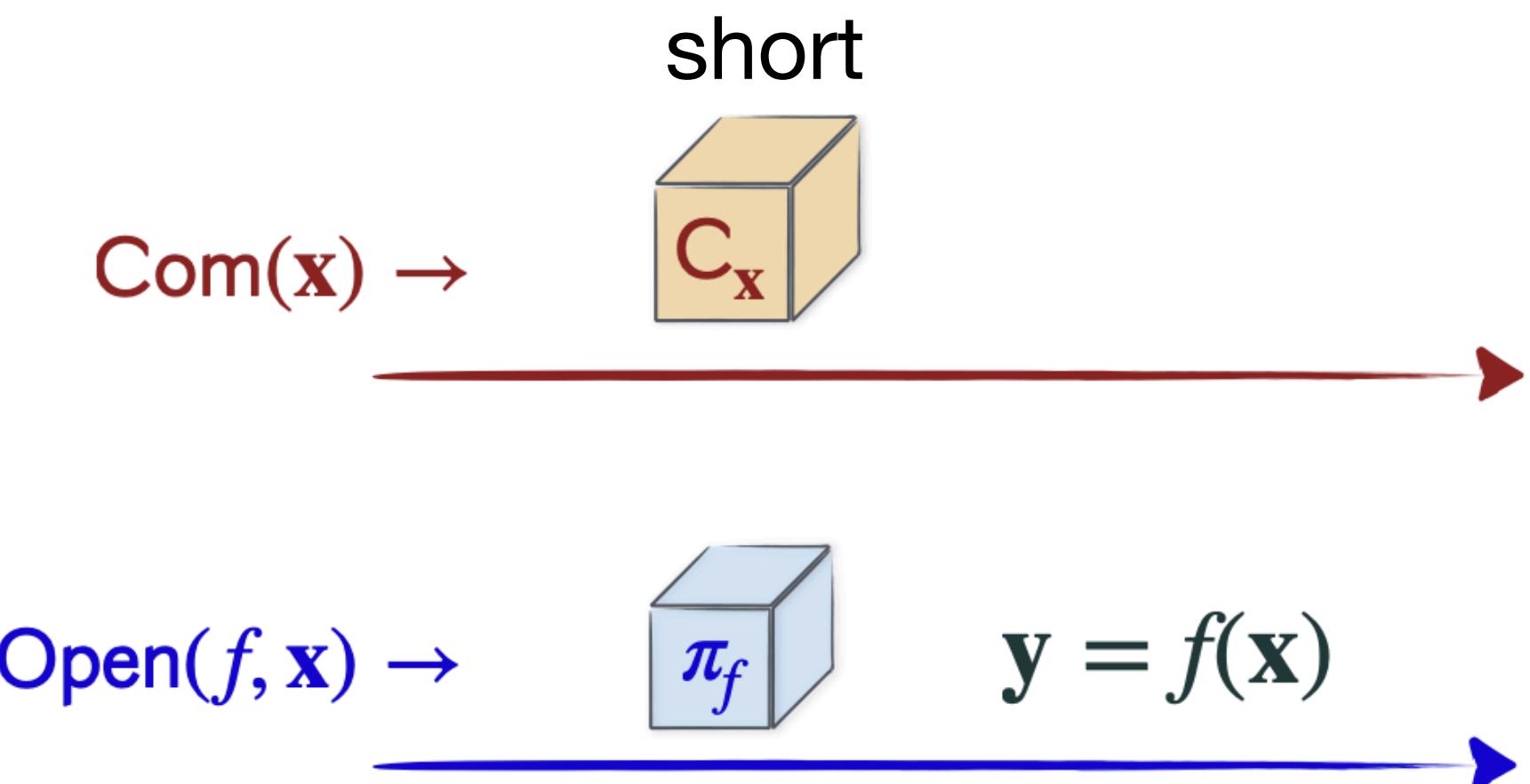


Client (Verifier)

$$\text{Ver}(\mathbf{C}_x, f, \mathbf{y}, \pi_f) \stackrel{?}{=} 1$$

What are Functional Commitments? (FC)

Server (Prover)

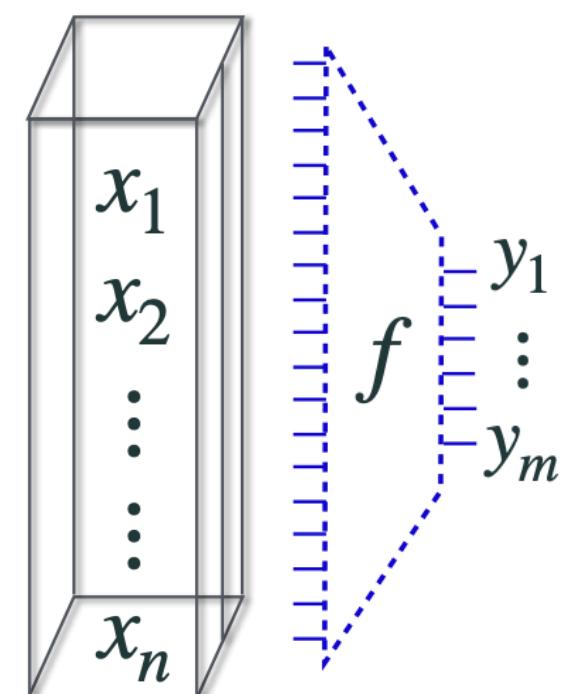
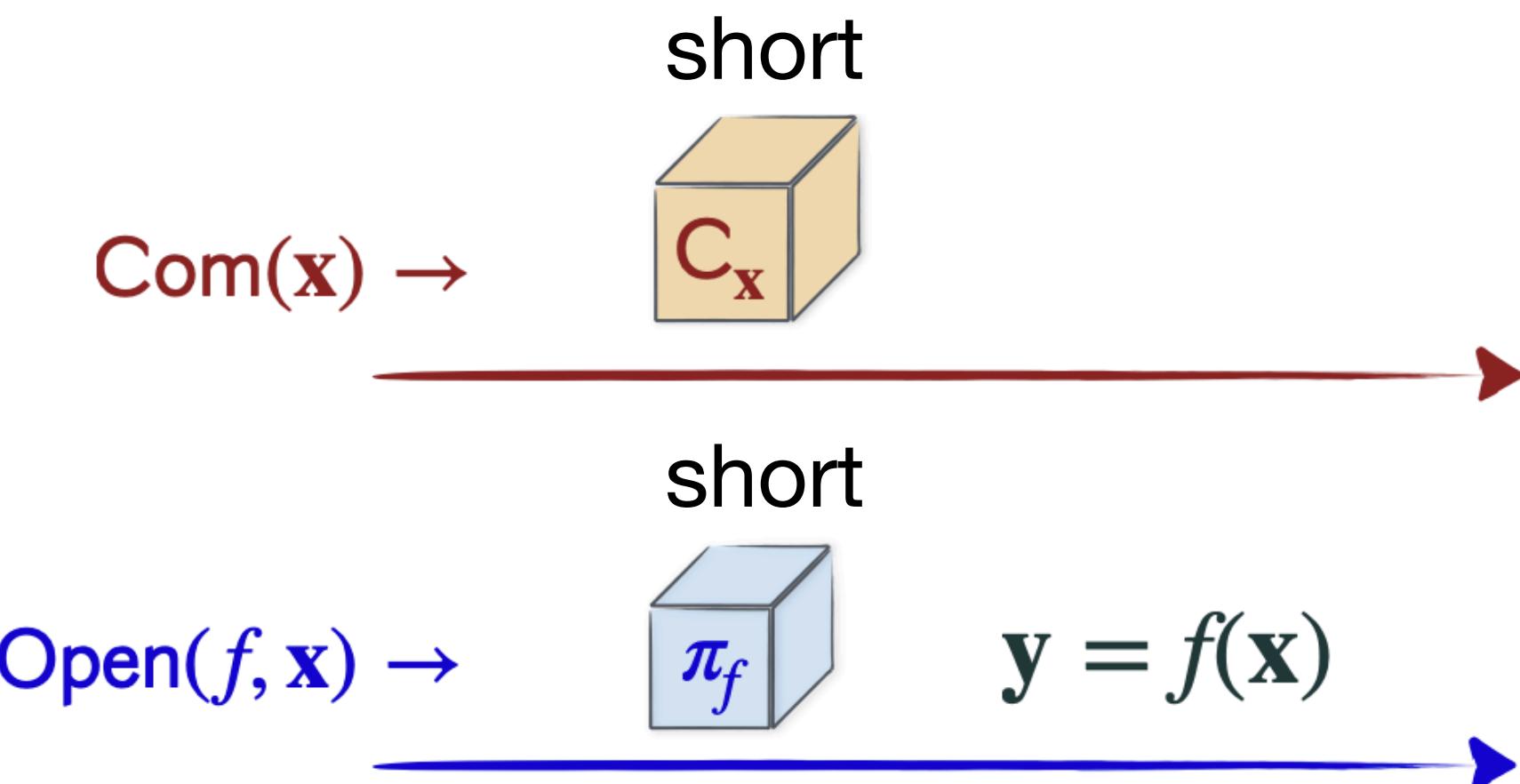


Client (Verifier)

$$\text{Ver}(\mathbf{C}_{\mathbf{x}}, f, \mathbf{y}, \pi_f) \stackrel{?}{=} 1$$

What are Functional Commitments? (FC)

Server (Prover)

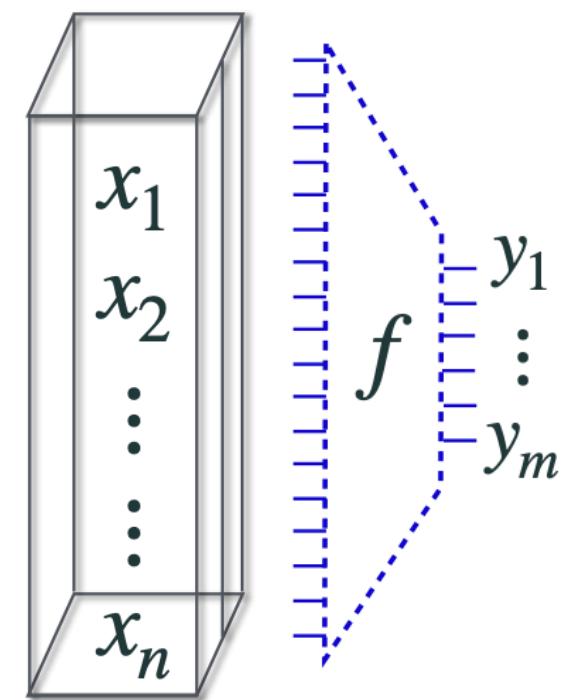


Client (Verifier)

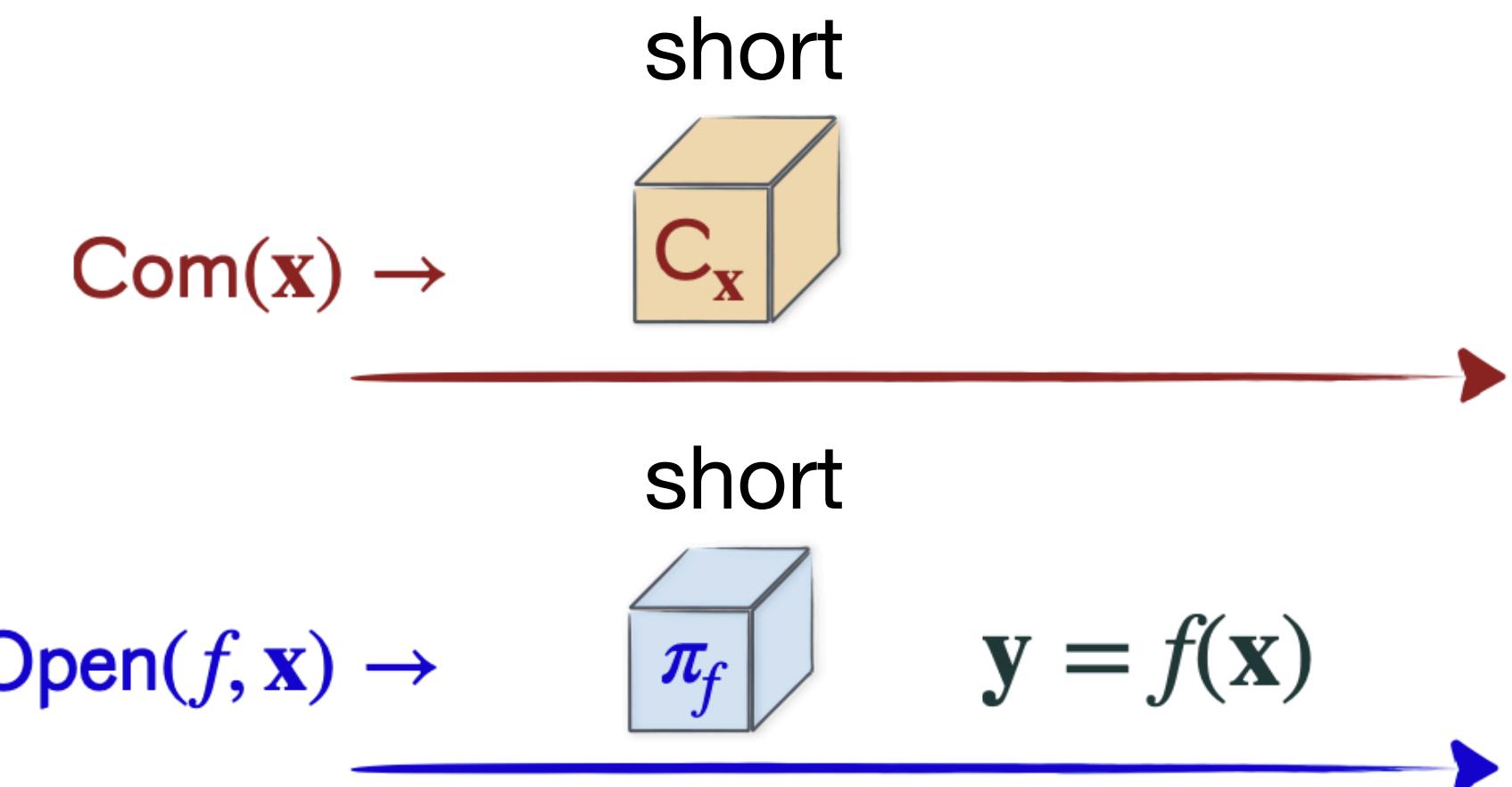
$$\text{Ver}(\mathbf{C}_{\mathbf{x}}, f, \mathbf{y}, \pi_f) \stackrel{?}{=} 1$$

What are Functional Commitments? (FC)

Server (Prover)



Functional commitments generalize polynomial and vector commitments.



Client (Verifier)

$$\text{Ver}(\mathbf{C}_{\mathbf{x}}, f, \mathbf{y}, \pi_f) \stackrel{?}{=} 1$$

Security of Functional Commitments

Evaluation Binding

Malicious Prover

Client (Verifier)

Security of Functional Commitments

Evaluation Binding

Malicious Prover

No adversary can succeed in providing inconsistent valid-looking outputs.

Client (Verifier)

Security of Functional Commitments

Evaluation Binding

Malicious Prover

$$C_x \xrightarrow{f, \pi_f, y, \pi'_f, y'} y \neq y'$$

Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

Security of Functional Commitments

Evaluation Binding

Malicious Prover

$$\mathbf{C_x} \xrightarrow{f, \pi_f, \mathbf{y}, \pi'_f, \mathbf{y}' \text{ and } \mathbf{y} \neq \mathbf{y}'} \mathbf{Ver}(\mathbf{C_x}, f, \mathbf{y}, \pi_f) = 1$$
$$\mathbf{Ver}(\mathbf{C_x}, f, \mathbf{y}', \pi'_f) = 1$$

Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

Security of Functional Commitments

Evaluation Binding

Malicious Prover

No adversary can succeed in providing inconsistent valid-looking outputs.

NB: intuitively stronger than deterministic and non-deterministic soundness
(but weaker than extractability).

$$\mathbf{C_x} \xrightarrow{f, \pi_f, \mathbf{y}, \pi'_f, \mathbf{y}' \quad \mathbf{y} \neq \mathbf{y}'} \mathbf{Ver}(\mathbf{C_x}, f, \mathbf{y}, \pi_f) = 1$$
$$\mathbf{Ver}(\mathbf{C_x}, f, \mathbf{y}', \pi'_f) = 1$$

Client (Verifier)

Incrementality in Functional Commitments

Motivation

Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

Incrementality in Functional Commitments

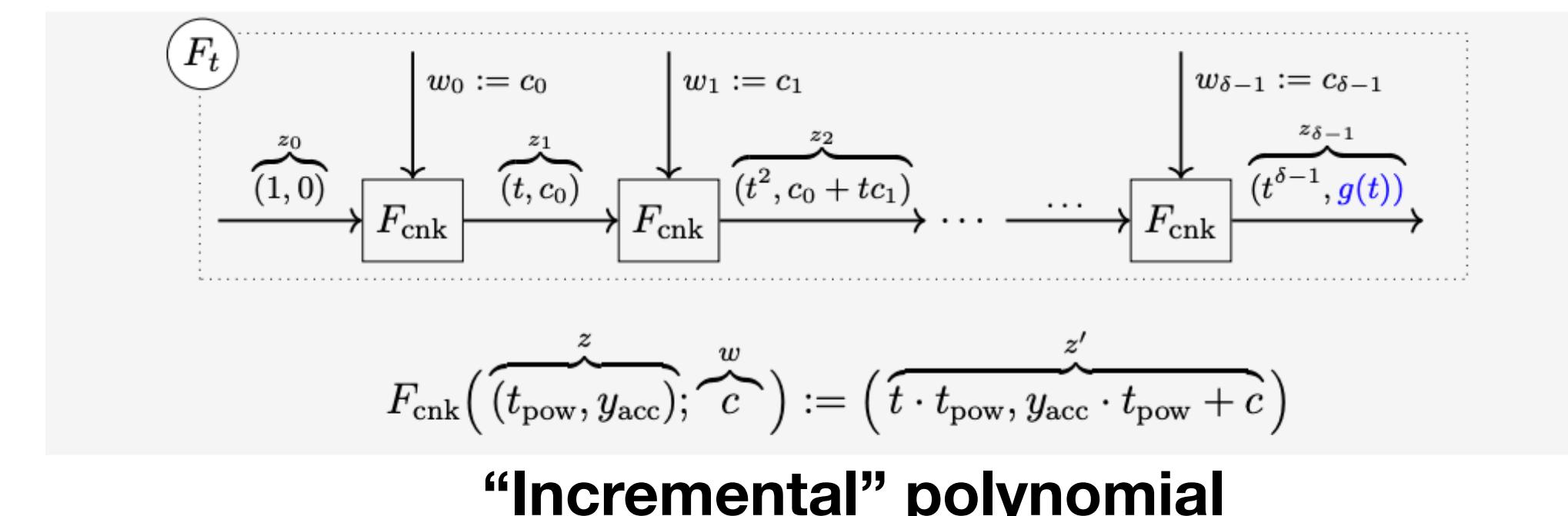
Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.



Incrementality in Functional Commitments

Motivation

Our goal:

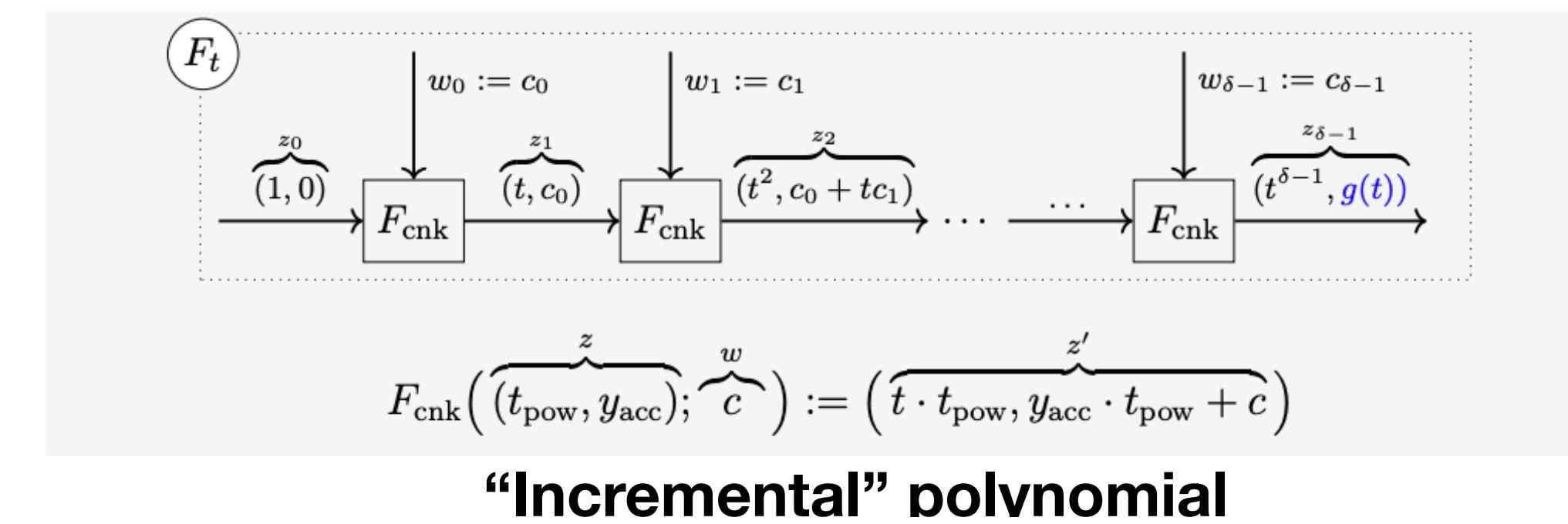
committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

Our contributions for IFC:

modeling, canonical construction,
security proofs, connections to other results.



Wrapping Up

Summary and, where could one go from here?

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.
 - Are there others?

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.
 - Are there others?
 - This gives a sufficient condition for security. Concrete ways of using it?

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.
 - Are there others?
 - This gives a sufficient condition for security. Concrete ways of using it?
 - Lifting is always possible and does not require extractability (with efficient *amortized* prover)

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.
 - Are there others?
 - This gives a sufficient condition for security. Concrete ways of using it?
 - Lifting is always possible and does not require extractability (with efficient *amortized* prover)
 - The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (*no graceful security degradation*)

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.
 - Are there others?
 - This gives a sufficient condition for security. Concrete ways of using it?
 - Lifting is always possible and does not require extractability (with efficient *amortized* prover)
 - The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (*no graceful security degradation*)
- **Other open questions:**

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.
 - Are there others?
 - This gives a sufficient condition for security. Concrete ways of using it?
 - Lifting is always possible and does not require extractability (with efficient *amortized* prover)
 - The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (*no graceful security degradation*)
- **Other open questions:**
 - How to build Incremental Functional Commitments from falsifiable assumptions?

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.
 - Are there others?
 - This gives a sufficient condition for security. Concrete ways of using it?
 - Lifting is always possible and does not require extractability (with efficient *amortized* prover)
 - The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (*no graceful security degradation*)
- **Other open questions:**
 - How to build Incremental Functional Commitments from falsifiable assumptions?
 - Can we prove the security/insecurity of concrete existing systems (with these or other techniques)?

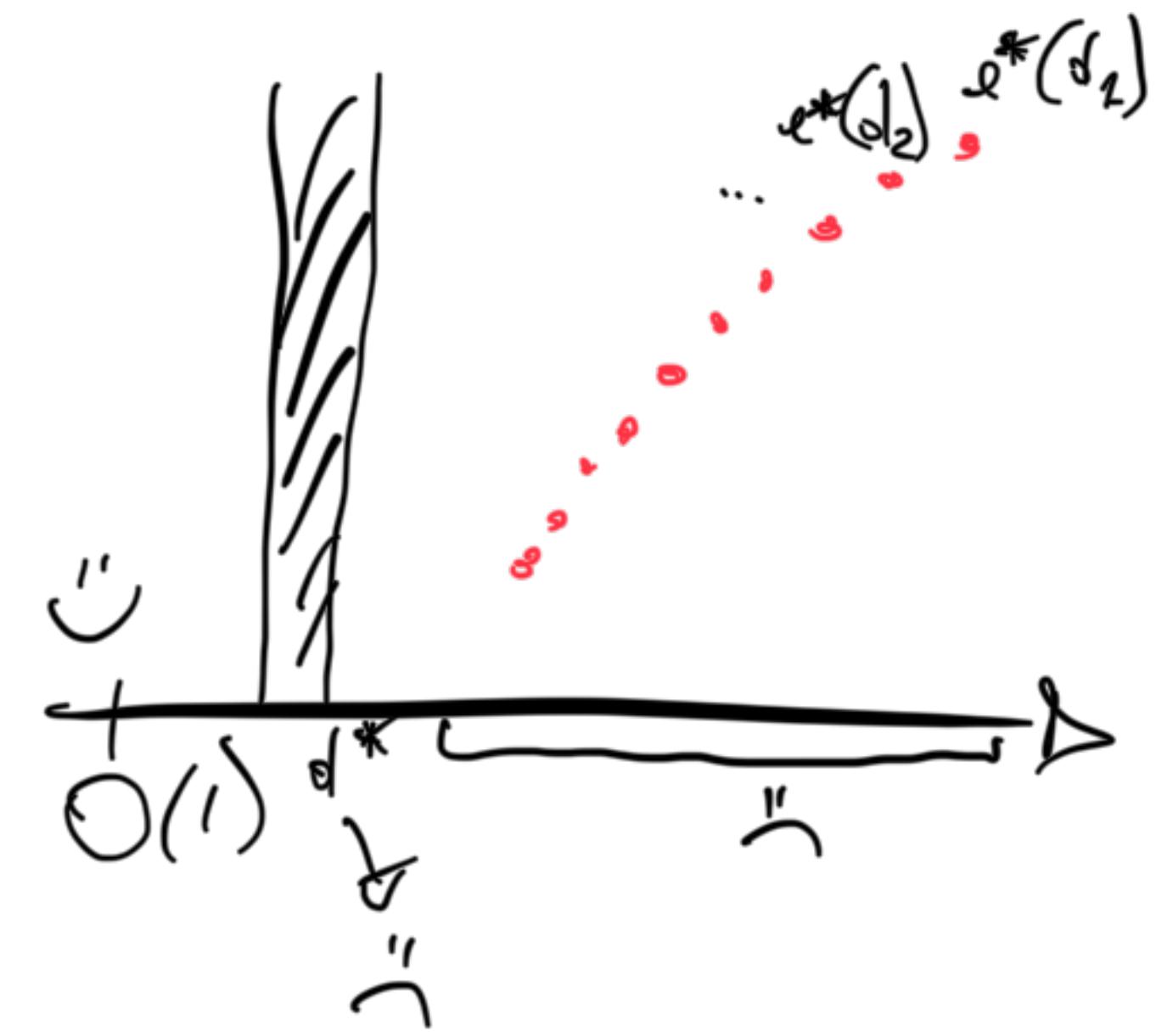
Thank you! Questions?

Wrapping Up

Summary and, where could one go from here?

- **This work:** A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
- **Moderately intriguing findings (at least to me):**
 - IVC *might* be the only primitive where infinitely-often and almost-everywhere security are so interconnected.
 - Are there others?
 - This gives a sufficient condition for security. Concrete ways of using it?
 - Lifting is always possible and does not require extractability (with efficient *amortized* prover)
 - The “insecurity” in insecure IVCs “does not quite improve as you move towards the safe zone” (*no graceful security degradation*)
- **Other open questions:**
 - How to build Incremental Functional Commitments from falsifiable assumptions?
 - Can we prove the security/insecurity of concrete existing systems (with these or other techniques)?

Extra slide on graceful sec. degradation



Theorem 6. Given any sequence of superconstant—i.e., $\omega(1)$ —depth bounds R_0, R_1, R_2, \dots , there always exists a superconstant depth bound L such that for all i , $R_i \succeq L$.

$$\exists d_1, d_2, \dots : e^*(d_i) < e^*(d_{i-1})$$

$e^* := \approx \log$ of Adv. of
"BEST" \mathcal{A}

Extra slide on io-soundness

Theorem (Informal statement of Corollary 1). Let Π be an IVC scheme and $D = \omega(1)$ be a depth bound. Let $E \subseteq \mathbb{N}$ be an infinite and “exponentially sparse” set of security parameters where Π achieves negligible soundness at depth bound D . Then there exists a depth bound $d = \omega(1)$ where Π achieves (standard) negligible soundness.

Theorem (Informal statement of Corollary 2). Let $\Pi, D = \omega(1)$, and E as in the previous theorem. Then:

- E exponentially sparse $\implies d = O(\log D)$.
- E sub-exponentially sparse $\implies d = O(\text{polylog} D)$.

Theorem 3. Let $E = \{\lambda_1 < \lambda_2 < \dots\} \subseteq \mathbb{N}$ be a constructible (2^{κ^T}) -sparse set for some T with $0 < T \leq 1$. Let Π be an IVC that is i.o-sound with respect to E for depth bound $D(\cdot)$. Let $d'(\cdot)$ be a depth bound. If for all $i \in \mathbb{N}$,

$$d'(\lambda_{i+1} - 1) \leq D(\lambda_i), \tag{\blacktriangle}$$

then Π is (almost-everywhere) sound for depth bound d' if appropriately parameterized (Definition 3). The resulting proving time, verification time and proof size are like those originally in Π (up to constant factors).