When Can We Incrementally Prove
Computations of Arbitrary Depth?

Matteo Campanelli Eli'irﬁlil

Offchain Labs %
[=]| S

University of Tartu, Estonia
eprint:2025/1413

matteo@offchainlabs.com
www.binarywhales.com

joint work with
Dario Fiore an d Mahak Pancholi
(IMDEA Software Institute)

https://eprint.iacr.org/2025/1413
mailto:matteo@offchainlabs.com

This Talk in a Nutshell

This Talk in a Nutshell

A study of the security of
Incrementally Verifiable Computation (IVC) under
the lens of the depth of the proven computation.

This Talk in a Nutshell

A study of the security of
Incrementally Verifiable Computation (IVC) under
the lens of the depth of the proven computation.

Our main motivation:
how can we prove security (or insecurity)
when we move beyond constant depth?

Succinct Cryptographic Proofs (SNARKS)

Il

| e o
g7z

y "'/ / ‘ =

S P
erver (Prover) Client (Verifier)

Succinct Cryptographic Proofs (SNARKS)

TG

o

'il s
iz i
SR
’ Gl ’/; ./,;" -
-~
7 Y /,%// =
’7 ’-/ - , g o

Some program F

S P
erver (Prover) Client (Verifier)

Succinct Cryptographic Proofs (SNARKS)

Server (Prover)

Il
it
,},.l I = aer
4 vy

Client (Verifier)

Some program F

Client would like to know
whether dw : F(x,w) =1

Succinct Cryptographic Proofs (SNARKS)

Some program F

Server (Prover)

Client (Verifier)

Client would like to know
whether dw : F(x,w) =1

Succinct Cryptographic Proofs (SNARKS)

‘\i."'/l ! a‘{ \

’ - Fl)“’.{ljlb(‘}-i:[i,
A R 9,

Proof that statement is true

Some program F

S P
erver (Prover) Client (Verifier)

Client would like to know
whether dw : F(x,w) =1

Succinct Cryptographic Proofs (SNARKS)

‘\i."'/l ! a‘{ \

’ - Fl)“’.{ljlb(‘}-i:[i,
A R 9,

Proof that statement is true

Some program F

Server (Prover)

Verify(x, x)

Client (Verifier)

Client would like to know
whether dw : F(x,w) =1

Succinct Cryptographic Proofs (SNARKS)

WAy,

o s () (x) e
% ’ % '
".' ‘\i."', l ! a‘{ \
S ;
NS
NN ¥

Proof that statement is true

Some program F

Server (Prover) Verify(x,)

Client (Verifier)

Common requirement: Succinctness

7 is very small; Verify is very fast Client would like to know
whether dw : F(x,w) =1

Limitations of Traditional “Monolithic” Proofs

Limitations of Traditional “Monolithic” Proofs

* | arge memory requirements

Limitations of Traditional “Monolithic” Proofs

* | arge memory requirements

 whole “trace” of the computation should in principle be kept all in memory
at the same time

Limitations of Traditional “Monolithic” Proofs

* | arge memory requirements

 whole “trace” of the computation should in principle be kept all in memory
at the same time

* No pipelining

Limitations of Traditional “Monolithic” Proofs

* | arge memory requirements

 whole “trace” of the computation should in principle be kept all in memory
at the same time

* No pipelining

* Must finish the computation before starting proving

Limitations of Traditional “Monolithic” Proofs

* | arge memory requirements

 whole “trace” of the computation should in principle be kept all in memory
at the same time

* No pipelining
* Must finish the computation before starting proving

 Cannot take advantage of incremental computations (next slide)

Incremental Computations

Incremental Computations

Examples of natural applications:

Incremental Computations

Examples of natural applications:
o Streaming algorithms

Incremental Computations

Examples of natural applications:

o Streaming algorithms
« RAM computations

Incremental Computations

Examples of natural applications:

o Streaming algorithms
« RAM computations
* Verifiable Delay Functions (VDF)

Incremental Computations

Examples of natural applications:

o Streaming algorithms

« RAM computations

* Verifiable Delay Functions (VDF)
 Round functions in symmetric primitives

Incremental Computations

Examples of natural applications:

Streaming algorithms

RAM computations

Verifiable Delay Functions (VDF)

Round functions in symmetric primitives
Recurrent neural networks

Incremental Computations

Examples of natural applications:

Streaming algorithms

RAM computations

Verifiable Delay Functions (VDF)

Round functions in symmetric primitives
Recurrent neural networks

Incrementally Verifiable Computations (IVC)

Incrementally Verifiable Computations (IVC)

Z Z Ca
?\"F X R'(: —> Rf —>

l
T4 7 ik

Proof size should be sublinear in the # of steps (the depth of the computation)

Incrementally Verifiable Computations (IVC)

I e y v Advantages

Z Z Ca
?\"F X R'(: —> Rf —>

l
T4 7 ik

Proof size should be sublinear in the # of steps (the depth of the computation)

Incrementally Verifiable Computations (IVC)

I e y v Advantages

Z::» Zl) C2 _—-\>2-S en o
-@ r > v Low memory footprint

e R’t’/ 21 ‘PRV,, _3 R"f —H °n
|
T e Bkl

Proof size should be sublinear in the # of steps (the depth of the computation)

Incrementally Verifiable Computations (IVC)

I e y v Advantages

 Low memory footprint

* Pipelining opportunities

Proof size should be sublinear in the # of steps (the depth of the computation)

Incrementally Verifiable Computations (IVC)

W W
| ¥ ¥ Advantages
o F 2y | — o T fj) °on o
£ Low memory footprint

* Pipelining opportunities

e Natural model for incremental
computations

Proof size should be sublinear in the # of steps (the depth of the computation)

Incrementally Verifiable Computations (IVC)

W W
| ¥ ¥ Advantages
o F 2y | — o T fj) °on o
£ Low memory footprint

* Pipelining opportunities

e Natural model for incremental
computations

° * Proofs can be distributed (e.g., in
settings with zero-knowledge)

Proof size should be sublinear in the # of steps (the depth of the computation)

Constructions of IVC

(Practical or nearly-practical)

Constructions of IVC

(Practical or nearly-practical)

Constructions of IVC

(Practical or nearly-practical)

SNARK Prover’s statement (I'1is a SNARK)

Canonical construction
(SNARK recursion)

Constructions of IVC

(Practical or nearly-practical)

SNARK Prover’s statement (I'1is a SNARK)

Canonical construction
(SNARK recursion)

Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes

Abhiram Kothapalli Srinath Setty™* Ioanna Tziallat

TCarnegie Mellon University *Microsoft Research *New York University

Constructions of IVC

Nova: Recursive Zero-Knowledge Arguments o _
- - . Benedikt Biinz Alessandro Chiesa
from FOldlng SChemeS benedikt@cs.stanford.edu alexch@berkeley.edu
ractical or nearly-practica
Abhiram Kothapalli Srinath Setty* Ioanna Tziallat William Lin Pratyush Mishra Nicholas Spooner
will.lin@berkeley.edu pratyush@berkeley.edu nspooner@bu.edu
TCarnegie Mellon University *Microsoft Research *New York University UC Berkeley UC Berkeley Boston University

SNARK Prover’s statement (I'1is a SNARK)

Canonical construction
(SNARK recursion)

Constructions of IVC

(Practical or nearly-practical)

SNARK Prover’s statement (I'1is a SNARK)

Canonical construction
(SNARK recursion)

Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes

Abhiram Kothapalli Srinath Setty™* Ioanna Tziallat

TCarnegie Mellon University *Microso ft Researc h *New York University

Proof-Carrying Data without Succinct Arguments

benedikt@cs.stanford.edu = alexch@berkeley.edu

will.lin@berkeley.edu pratyush@berkeley.edu nspooner@bu.edu

Folding/acc. Prover’s statement ([1 is a folding/acc. scheme)

Lightweight version
(folding/accumulation recursion)

* very approximate rendition (there are more details)

Challenges in Proving the Security of IVC

Challenges in Proving the Security of IVC

* First challenge: idealized models and “theoretical hygiene”

Challenges in Proving the Security of IVC

* First challenge: idealized models and “theoretical hygiene”

~

M.Verifyr~’

F
_ _/

Random Oracle

Challenges in Proving the Security of IVC

* First challenge: idealized models and “theoretical hygiene”

~ A | > T, e L,j
G (%}‘n%“ 7% 7—;,}
= & n 67,02)
& 0
N y, 2

Random Oracle Algebraic Group Model (AGM)

Challenges in Proving the Security of IVC

* First challenge: idealized models and “theoretical hygiene”

g —{H) Auer (% ¥, > + % ””) ‘
[1.VerifyT g (41¢) Lj? hi= <7, (3,9.)>
- n @T(xaj “explanation”
& 1
_ / A

Random Oracle Algebraic Group Model (AGM)

Challenges in Proving the Security of IVC

* First challenge: idealized models and “theoretical hygiene”

s —H) Aper (ke > * (L’j ,CX"")
[1.VerifyT 4 5 Lj? h'= < 7, (3.9,.)>
& (vn) |
0 @Tc’fj “explanation”
F & 0
_ J e
Random Oracle Algebraic Group Model (AGM)

 Second challenge (our focus): depth of the computation

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

Vi\ve_ - C&D‘Z'J \J(Td\

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability

\7Z‘\:’ET \-sz :J[E :

|

(ve

V-{.we, > C&"\ Z‘J \e]“:rd\
%Wc\b@o\...‘\ﬂd-b ____.(“J)

C.EO\Z’J.J \ TFJBJ\Q ¢ aoW EJ
Vard Y ogeee W~y

‘“/-{.\ve_ - C&"\Z-J \J{'Tl'd\

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability

\7Z‘\:’ET \-sz :J[E

|

(poly time)

(ve

V-{.we, > C&"\ Z‘J \e]“:rd\
%Wc\b@o\...‘\ﬂd-b ____.(“J)

C.EO\Z’J.J \ TFJBJ\Q ¢ aoW EJ
Vard Y ogeee W~y

‘“/-{.\ve_ - C&"\Z-J \J{'Tl'd\

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability

\7[@_ Apve ?[Ef:ly e
V'(\ ve > (2: Z'g[\
ﬁ %Wc\b Goo \ \)(/d B __F (“J)

C%c,\%,l J u,b\f) =+ 2 "’WW*DEJ

\J(/ WJn

‘“/-{.\ve_ - C&"\Z-J \J{'Tl'd\

20 21 7 Zd—1 Zd
wo w1 Wqg—2 wd—1
(_______________________ \
M.Verify
F
_ J

SNARK Prover’s statement (['1is a SNARK)

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability

\7[‘\:’?‘7 \-sz :J[E

|

(poly time)

(ve

V'(we e (&9 \ Z_Ol \JtTd\
%Na\b@o\n-‘wd-b ____.(“J)
(B2 d) > 2gmnd 2

Wy ure Wiy

SNARK extractability

— , (poly time)

e AL £,

‘“/-{.\ve_ - C&"\Z-J \J(de

F F F F
20 21 7 Zd—1 2d
wo w1 Wqg—2 wd—1
~ R
[1.Verify g
F
_ o

SNARK Prover’s statement ('l is a SNARK)

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability “re ™ (2, 29 d)
dyhnm)
- F F F F
\%fpp \‘A"’Q _\J[EIVQ 20 — > 21 " > ... - > Zd—1 ” > Z2d
u(‘ o > (& 2'0[\ 0 1 d—2 d—1

ﬁ%m‘b@%\) e

Co2id @ F 2

SNARK extractability OBS:

— . (poly time) B e S
17/?:[‘A'hz ;)* %A ')‘”{ié L M.Verify
m—> (X,T A - I :
K=Oﬂ\ F
€ _, v =) \)

SNARK Prover’s statement (['1is a SNARK)

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability e ™ (2, 29 4
(poly time)
T ° F F F F
\7[??—'%(J&WQ 3 E‘Ve ‘ 20 o > 21 o > .. o 2> Zd—1 " 1> Zd
ve > (&o‘%d\e,]t‘:rd\ B _)uf)-u
%IVC,\bGOO\“‘\Wd'b __F(ﬂ:‘) —=4>‘gA=
cZ:O\EJ‘J . 745%?1‘};:? &om 2{ VA -
SNARK extractability OBS:
— .(poly time) B B S
T Ay 38 M= | [N.Verify 5
g G RAYAN | TF
k=1
€ 5w g }

SNARK Prover’s statement ('l is a SNARK)

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability “re ™ (2, 29 d,)
poly time)
\%‘PP u-(\.ANQ 3 EW@_ 20 j(; > 21 ul; > e wi; Zd—1 wi1> Zd
ve > (& 2‘0[\)uf)= —)uf)= —
%Nc\b@o\ -‘Wd 3 __F(“J) —=4>‘gA=—rk —=4>‘gA=-.
c%o\afl‘cl . Trbg)&;=1> Z5 m] Wl
SNARK extractability OBS:
— ,_(poly time) B B N
17/??7 AT = %.4 .)u{}= |) [1.Verify :
‘Arp—b [x,"rr) —%%A ET (\) E =
k=81
€ o w . y

SNARK Prover’s statement (['1is a SNARK)

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability “re ™ (2, 29 d,)
poly time)
\%‘PP u-(\.ANQ 3 EW@_ 20 j(; > 21 ul; > e wi; Zd—1 wi1> Zd
ve > (& 2‘0[\)uf)= —)uf)= —
SEl\/e;&@(/"\ ‘\\)(/d B -F(“J) %EA:'T‘(=8, -
c%o\afl‘cl . Trbg)&;=1> Z5 m] Wl
SNARK extractability OBS:
1, (Poly time) B e ——— S
17/??7 AT = %.4 .)u{}= |) [1.Verify :
‘Arp—b [x,"rr) —%%A ET (\) E =
k=1
€ o w . y

SNARK Prover’s statement (['1is a SNARK)

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability e ™ (2, 29, d)
poly time)
5 s F F F F
\7[‘\3?4 \.Awa g[E,VQ \ 20 o > 21 o1 ? e o0 ? 2d—1 o, 7 Zd
ve. - 7. Z_J —2 —1
)z T)z T): Rl
SEw,g,"’s@%\---‘\’(/czl 3 _F(*J))bt-b‘g“«:—r“)btbg\:-—r“)uffsbgr.
cZ:O\E,l‘J . Tfhg?ﬁw Z, m = N vy,
SNARK extractability OBS:
7 . (poly time) B e L
1/?«5—,- Ag €, : k)=) | |N.Verify ’
£o " T o) | [
k=81
€ 5w .)

SNARK Prover’s statement (['1is a SNARK)

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability “re ™ (2, 29 d)
poly time)
- F F F F
\%WVLJ&"" E[EWQ \ 2 —F 2L e > 2d-1 T Ad
wve > [& 2'0[_ _
T T e
SEw,g,"’s@%\---‘\’(/czl 3 _F(*J) v—-1>‘gA=—r“ —=4>‘gA=Tk g -
(%0\3,1‘4 \Tfhgg = 2, WEJ N d vy,
o =g, [+ T

SNARK extractability OBS:

— , (poly time) B I N
17/?'?: A,]E ig : Mié . [1.Verify :
m—" (X, T A ! :
K=O(i§ F
2 > w -0t L y

SNARK Prover’s statement (['1is a SNARK)

How Do We Usually Prove Security in IVC?

A glimpse of what can go wrong and what depth has to do with it

IVC extractability e ™ (2, 2y d)
(poly time)
\7[??_.1 “AIVQ _\J[EW@_) 20 j(; > 21 ul; > e wi; Zd—1 wi1> Zd
we, > (&9 ‘ 2'0[\e,]t‘:rd\)u{}‘ — /u)_ —)uf)‘ —
%wefb@oo\---‘wd-b _F(*J) fr-1>‘gA=—r“ —r—bgA:-—r“ g -
CZ:O\EJ‘J . ng}@_ = &om ZJ N d vy,
e =€, [* T
. N/)
SNARK extractability OBS: *(¢ wl) = | g/veléf "
7 . (poly time) B s L
T Ay 38 M= | |N.Verify 5
Amp = (x.T) %%AET (\) i F
=0
€ 4w .)

SNARK Prover’s statement ('l is a SNARK)

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1il canetti@tau.ac.il
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer!
alexch@csail.mit.edu tromer@tau.ac.il
MIT Tel Aviv University

December 28, 2012

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1il canetti@tau.ac.il
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer!
alexch@csail.mit.edu tromer@tau.ac.il
MIT Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKSs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1il canetti@tau.ac.il
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer!
alexch@csail.mit.edu tromer@tau.ac.il
MIT Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKSs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University

Idea: proceed in a tree fashion
rather than along a path.

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1il canetti@tau.ac.il
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer!
alexch@csail.mit.edu tromer@tau.ac.il
MIT Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKSs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University

7 NT O TwT - .
: - - & ra - * ¥ F ®
Idea: proceed in a tree fashion 2. B2 5 2 L N - P =)

rather than along a path.

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1il canetti@tau.ac.il
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer!
alexch@csail.mit.edu tromer@tau.ac.il
MIT Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKSs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu
Stanford University

Idea: proceed in a tree fashion
rather than along a path.

~ _BASS S
n%ﬁ 'H;,BA
/N c°® //‘\\
= e T F F T P

Zo —a %l —Ba’L\bﬂ'o’.—b‘ZI—_booo_BZJ-r—sz

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1il canetti@tau.ac.il
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer!
alexch@csail.mit.edu tromer@tau.ac.il
MIT Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKSs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University

Idea: proceed in a tree fashion
rather than along a path.

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*

nirbitan@tau.ac.1il canetti@tau.ac.il ol
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer!
alexch@csail.mit.edu tromer@tau.ac.il
MIT Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKSs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University

Idea: proceed in a tree fashion
rather than along a path.

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1il canetti@tau.ac.il ol
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer!
alexch@csail.mit.edu tromer@tau.ac.il
MIT Tel Aviv University

December 28, 2012

Mangrove: A Scalable Framework for Folding-based SNARKSs

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University

Idea: proceed in a tree fashion
rather than along a path.

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1l canetti@tau.ac.1il -
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer' 4 4
alexch@csail.mit.edu tromer@tau.ac.1l
MIT Tel Aviv University

December 28, 2012

N
Mangrove: A Scalable Framework for Folding-based SNARKSs ”';j €R

IN”QR
Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh % m /N A
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University \Me BASQ

AN //'\\

—————

Idea: proceed in a tree fashion ¥ P .9 @ e, o2y

Z — % — a — S O»9 > 2 ——b Oeo
rather than along a path. ° ' 2
We extract h times. We want h to be O(1)

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1l canetti@tau.ac.1il -
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer' 4 4
alexch@csail.mit.edu tromer@tau.ac.1l
MIT Tel Aviv University

December 28, 2012

N
Mangrove: A Scalable Framework for Folding-based SNARKSs ”';j €R

IN”QR
Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh % m /N A
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University \Me BASQ

AN //'\\

—————

Idea: proceed in a tree fashion ¥ P .9 @ e, o2y

Z — % — a — S O»9 > 2 ——b Oeo
rather than along a path. ° ' 2
We extract h times. We want h to be O(1)

For that, choose branching factor O(A).

The “Tree Approach”

A canonical way to go around the problem we just saw (via extractability)

Recursive Composition and Bootstrapping
for SNARKSs and Proof-Carrying Data

Nir Bitansky* Ran Canetti*
nirbitan@tau.ac.1l canetti@tau.ac.1il -
Tel Aviv University Boston University and
Tel Aviv University
Alessandro Chiesa Eran Tromer' o £ 1
alexch@csail.mit.edu tromer@tau.ac.1l
MIT Tel Aviv University

December 28, 2012

N
Mangrove: A Scalable Framework for Folding-based SNARKSs "';j €R

IN”QR
Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh % m /N m
{wdnguyen, tcdatta, binyi, tyagi, dabo}@cs.stanford.edu

Stanford University \BASQ BASQv

AN //'\\

—————

Idea: proceed in a tree fashion ¥ P .9 @ e, o2y

Z — % =5 a — © 09 — 2 ——b Oeo
rather than along a path. ° ' 2
We extract h times. We want h to be O(1)

For that, choose branching factor O(A).

Why Does Security Beyond O(1) Depth Matters?

A digression on motivation

Why Does Security Beyond O(1) Depth Matters?

A digression on motivation

» Cryptographic settings

Why Does Security Beyond O(1) Depth Matters?

A digression on motivation

» Cryptographic settings
 VDFs

Why Does Security Beyond O(1) Depth Matters?

A digression on motivation

» Cryptographic settings
 VDFs

e requires w(1) iterations

Why Does Security Beyond O(1) Depth Matters?

A digression on motivation

» Cryptographic settings
 VDFs
e requires w(1) iterations

 Hashing and other symmetric key primitives

Why Does Security Beyond O(1) Depth Matters?

A digression on motivation

» Cryptographic settings
 VDFs
e requires w(1) iterations
 Hashing and other symmetric key primitives

* round functions require = A iterations

Why Does Security Beyond O(1) Depth Matters?

A digression on motivation

» Cryptographic settings
 VDFs
e requires w(1) iterations
 Hashing and other symmetric key primitives
* round functions require = A iterations

* (General improved understanding of where we can use which constructions

How the Community Has Addressed This—A Landscape

~

Using/proving secure
schemes beyond
O(1) depth

_ J

How the Community Has Addressed This—A Landscape

more practically

relevant scheme
Using/proving secure

schemes beyond
_ _J

O(1) depth

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

more practically
relevant scheme

_

Using/proving secure

~

schemes beyond
O(1) depth

S

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

more practically
relevant scheme

~

Using/proving secure

schemes beyond
O(1) depth
less practically

relevant schemes

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

~

Using/proving secure

schemes beyond

O(f)depth

more practically
relevant scheme

less practically

relevant schemes

-~

o

~

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

~

Using/proving secure

schemes beyond

O(f)depth

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

more practically
relevant scheme

o

* “You Only Live Once” \

less practically

relevant schemes

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

~

Using/proving secure

schemes beyond

O(f)depth

more practically
relevant scheme

less practically

relevant schemes

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

o

* “You Only Live Once” \

How the Community Has Addressed This—A Landscape

ﬁOLO:* (usually by practitioners) * “You Only Live Once” \
~ “It should be fine; let’s use it.”

.) . . Heuristic assumptions on extractor size/time:
InCIUdeS recurSIOn_based CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal
SChemeS (iﬂClUding those Malleable SNARKSs and Their Applications in the security parameter, we have to assume fast extraction (meaning that the

b d f I d . t extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
ased on 10 |n9, e C-) polynomial poly independent of the adversary) to avoid an exponential blow-up

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

more practically
relevant scheme

~

Using/proving secure
schemes beyond
O(1) depth D

- J

_

less practically
relevant schemes

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

Using/proving secure

~

schemes beyond

O(f)depth

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

* “You Only Live Once” \

Malleable SNARKSs and Their Applications

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal
in the security parameter, we have to assume fast extraction (meaning that the
extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

o

/

How the Community Has Addressed This—A Landscape

* “You Only Live Once” \

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

Using/proving secure

~

schemes beyond

O(f)depth

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal
Malleable SNARKSs and Their Applications in the security parameter, we have to assume fast extraction (meaning that the
extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

Security Bounds for Proof-Carrying Data

St ra i g ht - Li ne EXt ra Ct i on from Straightline Extractors

o

alessan

Alessandro Chiesa
dro.chiesalepfl.ch
EPFL

Shahar Samocha
shahars@starkware.co
StarkWare

Ziyi Guan
ziyi.guan@epfl.ch
EPFL

Eylon Yogev
eylon.yogev@biu.ac.il
Bar-Ilan University

/

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

Using/proving secure

~

schemes beyond

O(f)depth

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)

~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

* “You Only Live Once” \

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal
Malleable SNARKSs and Their Applications in the security parameter,
extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

we have to assume fast extraction (meaning that the

Straight-Line Extraction

o

Security Bounds for Proof-Carrying Data
from Straightline Extractors

Alessandro Chiesa Ziyi Guan
alessandro.chiesalepfl.ch ziyi.guan@epfl.ch
EPFL EPFL
Shahar Samocha Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

Matteo Campanelli', Dario Fiore?, and Mahak Pancholi? J

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

Using/proving secure

~

schemes beyond

O(f)depth

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

* “You Only Live Once” \

Malleable SNARKSs and Their Applications in the security parameter,

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal

extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

we have to assume fast extraction (meaning that the

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

Security Bounds for Proof-Carrying Data

Alessandro Chiesa Ziyi Guan
alessandro.chiesalepfl.ch ziyi.guan@epfl.ch
EPFL EPFL
Shahar Samocha Eylon Yogev

St ra i g ht - Li ne EXt ra Ct i on from Straightline Extractors

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

“Tree-approach”
an rove (CRYPTO24),...]

Matteo Campanelli', Dario Fiore?, and Mahak Pancholi? J

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

Using/proving secure

~

schemes beyond

O(f)depth

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

* “You Only Live Once” \

Heuristic assumptions on extractor size/time:

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal
Malleable SNARKSs and Their Applications in the security parameter, we have to assume fast extraction (meaning that the
extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

Security Bounds for Proof-Carrying Data

Alessandro Chiesa Ziyi Guan
alessandro.chiesalepfl.ch ziyi.guan@epfl.ch
EPFL EPFL
Shahar Samocha Eylon Yogev

St ra i g ht - Li ne EXt ra Ct i on from Straightline Extractors

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

Matteo Campanelli', Dario Fiore?, and Mahak Pancholi?

“Tree-approach”
an rove (CRYPTO24),...]

-

_

J
A

J

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

Using/proving secure

~

schemes beyond

O(f)depth

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)

~ “[t should be fine; let’s use it.”

* “You Only Live Once” \

Heuristic assumptions on extractor size/time:

Malleable SNARKSs and Their Applications

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal
in the security parameter, we have to assume fast extraction (meaning that the
extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
an rove (CRYPTO24),...]

Security Bounds for Proof-Carrying Data
from Straightline Extractors

Alessandro Chiesa Ziyi Guan
alessandro.chiesalepfl.ch ziyi.guan@epfl.ch
EPFL EPFL
Shahar Samocha Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

Matteo Campanelli', Dario Fiore?, and Mahak Pancholi?

_

ﬁoundness for deterministic F from batch arguments

J
A

J

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

~

Using/proving secure
schemes beyond

| O()depth

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)

~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal

* “You Only Live Once” \

Malleable SNARKSs and Their Applications

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

in the security parameter,

extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

we have to assume fast extraction (meaning that the

Straight-Line Extraction

“Tree-approach”
an rove (CRYPTO24),...]

Alessandro Chiesa Ziyi Guan

Security Bounds for Proof-Carrying Data
from Straightline Extractors

alessandro.chiesalepfl.ch ziyi.guan@epfl.ch

EPFL EPFL

Shahar Samocha Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

Matteo Campanelli', Dario Fiore?, and Mahak Pancholi?

Rate-1 Non-Interactive Arguments for Batch-NP
and Applications *
Lalita Devadas Rishab Goyal Yael Kalai
MIT University of Wisconsin-Madison Microsoft Research and MIT

Vinod Vaikuntanathan
MIT

_

ﬁoundness for deterministic F from batch arguments

J
A

J

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

Using/proving secure

~

schemes beyond

O(f)depth

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

* “You Only Live Once” \

Heuristic assumptions on extractor size/time:

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal
Malleable SNARKs and Their Applications in the security parameter, we have to assume fast extraction (meaning that the
extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

Security Bounds for Proof-Carrying Data

St ra i g ht - Li ne EXt ra Ct i on from Straightline Extractors

Alessandro Chiesa Ziyi Guan
alessandro.chiesalepfl.ch ziyi.guan@epfl.ch
EPFL EPFL
Shahar Samocha Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

Matteo Campanelli!, Dario Fiore?, and Mahak Pancholi?

“Tree-approach”
an rove (CRYPTO24),...]

ﬁoundness for deterministic F from batch arguments

J
h

Rate-1 Non-Interactive Arguments for Batch-NP

Vinod Vaikuntanathan
MIT

and Applications * Incrementally Verifiable Computation via Rate-1 Batch Arguments
Lalita Devadas Rishab Goyal Yael Kalai
MIT University of Wisconsin-Madison Microsoft Research and M

Omer Paneth*! and Rafael Passf!?

_

J

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

_

Using/proving secure

~

schemes beyond
O(1) depth Y

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

* “You Only Live Once” \

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal

Malleable SNARKs and Their Applications in the security parameter, we have to assume fast extraction (meaning that the

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

“Tree-approach”
an rove (CRYPTO24),...]

St ra i g h t - Li ne Ext ra Ct i on from Straightline Extractors Shahar Samocha Eylon Yogev

Alessandro Chiesa Ziyi Guan
K K alessandro.chiesalepfl.ch ziyi.guan@epfl.ch
Security Bounds for Proof-Carrying Data EPFL EPFL

On Composing AGM-Secure Functionalities with Cryptographic Proofs
Applications to Unbounded-Depth IVC and More*

Matteo Campanelli!, Dario Fiore?, and Mahak Pancholi? J

ﬁoundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP
and Applications *

Lalita Devadas Rishab Goyal Yael Kalai
MIT University of Wisconsin-Madison Microsoft Research and M

Vinod Vaikuntanathan

MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Verifiable Streaming Computation and Step-by-Step

Omer Paneth*! and Rafael Pass’
Zero-Knowledge

_

Abtin Afshar, Rishab Goyal*

J

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

~

Using/proving secure
schemes beyond
O(1) depth D

_

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

* “You Only Live Once” \

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal

Malleable SNARKSs and Their Applications

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

in the security parameter, we have to assume fast extraction (meaning that the
extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
an rove (CRYPTO24),...]

Alessandro Chiesa Ziyi Guan

alessandro.chiesalepfl.ch ziyi.guan@epfl.ch

Security Bounds for Proof-Carrying Data EPFL EPFL
from Straightline Extractors

Shahar Samocha Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

Matteo Campanelli!, Dario Fiore?, and Mahak Pancholi?

ﬁoundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP
and Applications *
Lalita Devadas Rishab Goyal Yael Kalai
MIT University of Wisconsin-Madison Microsoft Research and M

Vinod Vaikuntanathan
MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Verifiable Streaming Computation and Step-by-Step

Omer Paneth*! and Rafael Pass’
Zero-Knowledge

_

Soundness for non-deterministic computations

Abtin Afshar, Rishab Goyal*

Incrementally Verifiable Computation for NP
from Standard Assumptions

Pratish Datta* Abhishek Jain® Zhengzhong Jint
NTT Research NTT Research and JHU Northeastern
Alexis Korb$ Surya Mathialagan Amit Sahai!
UCLA MIT UCLA

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

4)

Using/proving secure
schemes beyond

| O()depth

Limitations

more practically
relevant scheme

less practically
relevant schemes

ﬁOLO:* (usually by practitioners)

~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

* “You Only Live Once” \

Malleable SNARKSs and Their Applications

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

CXLlaCloOls Tull 111 PpOlLyIlOillial ULIHIC. 11 WE Wdalll LO allOW ally DOulld D pOlylOllllal
in the security parameter, we have to assume fast extraction (meaning that the
extractor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

Alessandro Chiesa Ziyi Guan
K K alessandro.chiesalepfl.ch ziyi.guan@epfl.ch
Security Bounds for Proof-Carrying Data EPFL EPFL

from Straightline Extractors

Shahar Samocha Eylon Yogev

[Mangrove (CRYPTO24),...]

Qree-approach”

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

Matteo Campanelli!, Dario Fiore?, and Mahak Pancholi?

ﬁoundness for deterministic F from batch arguments

MIT

Rate-1 Non-Interactive Arguments for Batch-NP

Lalita Devadas

and Applications *

Rishab Goyal Yael Kalai
University of Wisconsin-Madison Microsoft Research and M

Vinod Vaikuntanathan
MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Verifiable Streaming Computation and Step-by-Step

Omer Paneth*! and Rafael Pass’
Zero-Knowledge

_

Soundness for non-deterministic computations

Abtin Afshar, Rishab Goyal*

Incrementally Verifiable Computation for NP
from Standard Assumptions

Pratish Datta* Abhishek Jain® Zhengzhong Jint
NTT Research NTT Research and JHU Northeastern
Alexis Korb$ Surya Mathialagan Amit Sahai!
UCLA MIT UCLA

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

~

Using/proving secure
schemes beyond

O(1) depth

_ S

Limitations

more practically
relevant scheme

less practically

relevant schemes

[YOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

Malleable SNARKSs and Their Applications

Suvradip Chakraborty!, Dennis Hofheinz?, Roman Langrehr(?2, Jesper Buus
Nielsen3, Christoph Striecks®*, and Daniele Venturi(°

* “You Only Live Once” \

in the security”parameter, we have to assume fast extraction (meaning that the
exziiactor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
polynomial poly independent of the adversary) to avoid an exponential blow-up

Straight-Line Extraction

“Tree-approach”
an rove (CRYPTO24),...]

Alessandro Chiesa Ziyi Guan

Security Bounds for Proof-Carrying Data EPFL EPFL
from Straightline Extractors

alessandro.chiesalepfl.ch ziyi.guan@epfl.ch

Shahar Samocha Eylon Yogev

On Composing AGM-Secure Functionalities with Cryptographic Proofs

Applications to Unbounded-Depth IVC and More*

Matteo Campanelli!, Dario Fiore?, and Mahak Pancholi?

MIT

Rate-1 Non-Interactive Arguments for Batch-NP

Lalita Devadas

ﬁoundness for deterministic F from batch arguments

and Applications *

Rishab Goyal Yael Kalai
University of Wisconsin-Madison Microsoft Research and M
Vinod Vaikuntanathan
MIT

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Verifiable Streaming Computation and Step-by-Step

Omer Paneth*! and Rafael Pass’
Zero-Knowledge

_

Soundness for non-deterministic computations

Abtin Afshar, Rishab Goyal*

Incrementally Verifiable Computation for NP
from Standard Assumptions

Pratish Datta* Abhishek Jain® Zhengzhong Jint
NTT Research NTT Research and JHU Northeastern
Alexis Korb$ Surya Mathialagan Amit Sahai!
UCLA MIT UCLA

How the Community Has Addressed This—A Landscape

* “You Only Live Once” \

Includes “recursion-based”
schemes (including those
based on folding, etc.)

~

Using/proving secure
schemes beyond

O(1) depth

_ S

Limitations

more practically
relevant scheme

less practically
relevant schemes

Modifies schemes (or applicable only at times)

/

YOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

=y

Malleable SNARKSs and Their Applications

3l
4

Suvradip Chakraborty', Dennis
' =CThristoph Striecks

—Romman Langrehr <, Jesper Buus
, and Daniele Venturi

in the security”parameter, we have to assume fast extraction (meaning that the
exziiactor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
| polynomial poly independent of the adversary) to avoid an exponential blow-up

——

5

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Alessandro Chiesa

Security Bounds for Proof-Carrying Data
from Straightline Extractors

alessandro.chiesa@epfl.ch

EPFL

Shahar Samocha

Ziyi Guan
ziyi.guan@epfl ch\
EPFL

Eylon Yogev

T~

On Composing AGM-Secure Functionalities with Cryptographic Proofs
Applications to Unbounded-Depth IVC and More*

Matteo Campanelli!, Dario Fiore?, and Mahak Pancholi?

—_—

@oundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP
and Applications *

Lalita Devadas
MIT Univers

Rishab Goyal
ity of Wisconsin-Madison Micro

Yael Kalai
soft Research and M

Vinod Vaikuntanathan
MIT

Omer Paneth*! and Rafael Pass’

Incrementally Verifiable Computation via Rate-1 Batch Arguments

_

Soundness for non-deterministic computations

Zero-Knowledge

Abtin Afshar, Rishab Goy

Verifiable Streaming Computation and Step-by-Step

al®

Incrementally Verifiable Computation for NP
from Standard Assumptions

Pratish Datta* Abhishek Jain® Zhengzhong Jint
NTT Research NTT Research and JHU Northeastern
Alexis Korb$ Surya Mathialagan Amit Sahai'
UCLA MIT UCLA

/

How the Community Has Addressed This—A Landscape

* “You Only Live Once” \

Includes “recursion-based”
schemes (including those
based on folding, etc.)

~

Using/proving secure
schemes beyond

O(1) depth

_ S

Limitations

Modifies schemes (or applicable only at times)

more practically
relevant scheme

/

less practically, " ——,

relevant schemes

YOLO:* (usually by practitioners)
~ “[t should be fine; let’s use it.”

Heuristic assumptions on extractor size/time:

=y

Malleable SNARKSs and Their Applications

3l
4

Suvradip Chakraborty', Dennis
' =CThristoph Striecks

—Romman Langrehr <, Jesper Buus
, and Daniele Venturi

in the security”parameter, we have to assume fast extraction (meaning that the
exziiactor for an adversary running in time ¢ takes only time ¢ + poly(\) for a
| polynomial poly independent of the adversary) to avoid an exponential blow-up

——

5

Straight-Line Extraction

“Tree-approach”
[Mangrove (CRYPTO24),...]

Security Bounds for Proof-Carrying Data
from Straightline Extractors

Alessandro Chiesa Ziyi Guan ~—
alessandro.chiesalepfl.ch ziyi.guan@epfl.ch
EPFL EPFL
Shahar Samocha Eylon Yogev

T~

On Composing AGM-Secure Functionalities with Cryptographic Proofs
Applications to Unbounded-Depth IVC and More*

Matteo Campanelli!, Dario Fiore?, and Mahak Pancholi?

\

-—

Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP
and Applications *

Lalita Devadas Rishab Goyal Yael Kalai
MIT University of Wisconsin-Madison Microsoft Research and M
Vinod Vaikuntanathan
MIT

Omer Paneth*! and Rafael Pass’

Incrementally Verifiable Computation via Rate-1 Batch Arguments

_

Soundness for non-deterministic computations

Zero-Khowledge

Abtin Afshar, Rishab Goy

Verifiable Streaming Computation and Step-by-Step

al®

Incrementally Verifiable Computation for NP
from Standard Assumptions

Pratish Datta* Abhishek Jain® Zhengzhong Jint
NTT Research NTT Research and JHU Northeastern
Alexis Korb$ Surya Mathialagan Amit Sahai'
UCLA MIT UCLA

/

How the Community Has Addressed This—A Landscape

Includes “recursion-based”
schemes (including those
based on folding, etc.)

~

Using/proving secure
schemes beyond

O(1) depth

_ S

Limitations

—

a A Tk - ~ T IV~

Still open:

When are

less practically, " ——,

relevant schemes

Modifies schemes (or applicable only at times)

e/time:

* “You Only Live Once” \

urity parameter, we have to assume fast extraction (meaning that the
for an adversary running in time ¢ takes only time ¢ + poly()\) for a
ial poly independent of the adversary) to avoid an exponential blow-up

existing constructions

secure/insecure beyond O(1) depth? ————
Alessandr9 Chiesa . Ziyi Guan ~—
reievant schneme Security Bounds for Proof-Carrying Data | e e \
St rai g ht-Line Extraction from Straightline Extractors Shahar Samocha Eylon Yogev N

On Composing AGM-Secure Functionalities with Cryptographic Proofs
Applications to Unbounded-Depth IVC and More*

Matteo Campanelli!, Dario Fiore?, and Mahak Pancholi?

“Tree-approach”
[Mangrove (CRYPTO24),...]

N

\

—_—

/ Soundness for deterministic F from batch arguments

Rate-1 Non-Interactive Arguments for Batch-NP
and Applications *

Incrementally Verifiable Computation via Rate-1 Batch Arguments

Lalita Devadas Rishab Goyal Yael Kalai
MIT University of Wisconsin-Madison Microsoft Research and M

Verifiable Streaming Computation and Step-by-Step

Omer Paneth*! and Rafael Pass’
Zero-Khowledge

Vinod Vaikuntanathan
MIT

Abtin Afshar, Rishab Goyal*

Soundness for non-deterministic computations

Incrementally Verifiable Computation for NP
from Standard Assumptions
Pratish Datta* Abhishek Jain' Zhengzhong Jin

NTT Research NTT Research and JHU Northeastern

Alexis Korb$ Surya Mathialagan Amit Sahai'
UCLA MIT UCLA

/

This Work,s QueStion When aresej:(iilsl’ci:\)g'l3 ceor;:;tructions

secure/insecure beyond O(1) depth?

k The problem at hand

This Work’s Question

This Work’s Question

We approach this question through two main conceptual lenses.

Lens 1: “Depth” as a Core Object of Study

Lens 1: “Depth” as a Core Object of Study

77
NN R R R R R R N X N N R N rrrrr111.;
e et aeaeeeeeseseesesesety
o(1) O(log?(\) OWN O

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

S ??

O(1) O(log®()) OWN O\

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

() 7?7 27

EREHE T
O(1) O(log®()) OWN O\

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

() "o 7?7 27

EREHE T
O(1) O(log®()) OWN O\

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

?7?
©/\

» 2?7 27
R N N N N N N N R N N N R R R N R NN R RN NI I
| N N N N N N N N R R R R R R R RN L L

O(1) O(log®()) OWN O\

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

??

?7?
D7 Ty T m

O(1) O(log®()) OWN O\

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

O Tp— T #

O(1) O(log®())

The asymptotic depth “line”.

Lens 1: “Depth” as a Core Object of Study

?7? ?7?
& T TR T~ 9/\
' s e e 000000 .o:0000000..000......."...
I EEEEEEENNREEEREEENNNIIII L.
............ 00000000000 ROOROOORRNNS
O(1) O(log®(\)) O(

The asymptotic depth “line”.

A note on abuse of language:

| will say

“big/bigger” to mean “fast/er growing?;
“small/smaller” to mean “slow/er growing”

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

* The proof strategy that usually fails:

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

* The proof strategy that usually fails:
* In order to show extractability, show an extractor that succeeds in polynomial time.

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

* The proof strategy that usually fails:
* In order to show extractability, show an extractor that succeeds in polynomial time.

» Constructing such a machine is hard.

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

* The proof strategy that usually fails:
* In order to show extractability, show an extractor that succeeds in polynomial time.

» Constructing such a machine is hard.
* = We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

* The proof strategy that usually fails:
* In order to show extractability, show an extractor that succeeds in polynomial time.

» Constructing such a machine is hard.
* = We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

* soundness for deterministic computations (Adv. succeeds = z, = F(F(...F(F(zy))...)))

d times

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

* The proof strategy that usually fails:
* In order to show extractability, show an extractor that succeeds in polynomial time.

» Constructing such a machine is hard.
* = We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

* soundness for deterministic computations (Adv. succeeds = z, = F(F(...F(F(zy))...)))

d times
« soundness for non-deterministic computations

d times

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

* The proof strategy that usually fails:
* In order to show extractability, show an extractor that succeeds in polynomial time.

» Constructing such a machine is hard.
* = We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

* soundness for deterministic computations (Adv. succeeds = z, = F(F(...F(F(zy))...)))

d times
« soundness for non-deterministic computations

d times

» another notion of (hon-extractable) soundness that we introduce, but that is more expressive than the above.

Lens 2: Keeping Extractable Security in the Background

(And having in the foreground the relation [adversarial advantage] < [depth])

* The proof strategy that usually fails:
* In order to show extractability, show an extractor that succeeds in polynomial time.

» Constructing such a machine is hard.
* = We mostly look for techniques that avoid extractability and look at the advantage of the adversary in:

* soundness for deterministic computations (Adv. succeeds = z, = F(F(...F(F(zy))...)))

d times
« soundness for non-deterministic computations

d times

» another notion of (hon-extractable) soundness that we introduce, but that is more expressive than the above.
e ~ Incremental analogue of functional commitments

Our Results

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

First result™ conmee-
“weak insecurity” at big depths = security at smaller depths.

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

First result™ conmee-
“weak insecurity” at big depths = security at smaller depths.

' s 0o 0 0000000 'EENNENENEENENENEENERREEENEEEEEIEL 1) o®000 $4444
ooooooooooo 0000000...‘..“...‘..‘. .‘ .‘ *‘QQQ
ooooooooooo EENEENENEENENEEEREEEENIIIL L. [sX3) “

1
%
D

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

First result™ conmee-
“weak insecurity” at big depths = security at smaller depths.

e s s e s e ne $0000000000000000000000000NIIIIIDIDDYM
oooooooooo 000000.....‘..“...‘..‘.'... .‘ “000
ooooooooo oo0000000000.0.0....‘..".“.‘ “
Ot — =
D Some super-constant depth

(e.g. poly(A))

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

First result™ conmee-
“weak insecurity” at big depths = security at smaller depths.

&

/e

\

N< 7 &N
‘e e s s s s 00 $0000000000000000000000000NIIIIIDIDDYM
oooooooooo 000000.....‘..“...‘..‘.'...'.‘ “000
ooooooooo s o0 00 0000000.0.0....‘..".“.““

4 o~
D Some super-constant depth
(e.g. poly(h))

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

First result™ oo~
“weak insecurity” at big depths = security at smaller depths.
~

/s v \ “Weak” form of insecurity

\)

NIPETIN (more on that in a second)

..'..'...
........ s ssasesas s
.......oooooocoooooooﬁrc 0000
O%) — =
D Some super-constant depth

(e.g. poly(A))

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

- * n | |
First result™: =oonmes.
“weak insecurity” at big depths = security at smaller depths.
MPLSS <~

/s o\ “Weak” form of insecurity

\ [
<l;:_==l \\—: / &N (more on that in a second)

‘e o 0000 O EENENENENNNEEEENE NN R R R R R R R R R R A2 0 00 1010] $4444
oooooooo oo000000Q0...‘..“...‘..‘.'..".‘ QQQ"
oooooo o0000000.0.0.“.‘......‘..".‘.““

|
D Some super-constant depth
(e.g. poly(h))

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

- * n | |
First result™: =oonmes.
“weak insecurity” at big depths = security at smaller depths.
MPLSS <~

/s o\ “Weak” form of insecurity

\) .
«_ / (more on that in a second)
©&Nb <l;=:\ SNB

‘e o 0000 O EENENENENNNEEEENE NN R R R R R R R R R R A2 0 00 1010] $4444
oooooooo oo000000Q0...‘..“...‘..‘.'..".‘ QQQ"
oooooo o0000000.0.0.“.‘......‘..".‘.““

|
D Some super-constant depth
(e.g. poly(h))

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

- * n | |
First result™: =oonmes.
“weak insecurity” at big depths = security at smaller depths.
MPLSS <~

/s o\ “Weak” form of insecurity

\) .
«_ / (more on that in a second)
©&Nb <l;=:\ SNB

' e e s 0 0@ EENENENENNEENEEE NN N R R R R R R R AR A2 2 00001 1] $4444
oooooooo o0000000.....‘..“...‘..‘.'...'.‘ “000
oooooo o0000000.0.0.‘Q.‘......‘..".“.““
b
O%) T
(‘JT ?Q%Q‘%ﬁ D Some super-constant depth

(e.g. poly(A))

Our goals (distilled):

- finding tools to prove security/insecurity of any

Our Results

construction (including efficient existing ones).

- studying IVC depth and its relation to security
as a subject in its own right.

First result™ conmee-
“weak insecurity” at big depths = security at smaller depths.

MPLcS <7 /\“Weak” form of insecurity

v \
\ — .
~_ / (more on that in a second)
O, = T

EEREEEREEREREE oo00000000000.0.."'...". 009
::::::::::::::::::::::::::::::::33" 333m
O@J g} < ?Q%Qc?b D‘/ Ene super-constant depth
(.9 poly(A))
Implication:

to prove security at some w(1) depth d,
show some w(1) depth D where this weak property holds.

What Do We Mean by “Weak” Insecurity?

'\
\

(HPLicS
D = T
(NN
Q000000 OOOOONS [e)e
0000000000000 000.:
0000000000 0‘0 0000
b

What Do We Mean by “Weak” Insecurity?

'\
\

/‘\

(.\ :=Iinfinitely-often soundness (i0-SND) | | i

\ —

N~ Z&NAN

What Do We Mean by “Weak” Insecurity?

.o
~\

s
N\

(MPLISS (7
/‘\\ . . . _ | ©&Nb :! \
(_*\ :=Iinfinitely-often soundness (i0-SND) | | :iiiiiiiiiiiiiiiiiiiisssssssss
N- /&b

o RS

Traditional “almost-everywhere” soundness (ae-SND):

oot . Jeeo) s v (N e el 7 he N

What Do We Mean by “Weak” Insecurity? .-,

s
N\

(HPLICS
PE | , .. =
(.2\ :=infinitely-often soundness (io-SND) | | :i:iiiiiiiiiiississsss
N/ &ND '

Traditional “almost-everywhere” soundness (ae-SND):

oot A Teemg(D) : Ave ()< e 7 he N

(Vo Idy s SIS IV Y I TT..

1 N\
o 1 i 2

Ao N

What Do We Mean by “Weak” Insecurity? .-,

s
N\

(HPLICS
PE | , .. =
(.2\ :=infinitely-often soundness (io-SND) | | :i:iiiiiiiiiiississsss
N/ &ND '

Traditional “almost-everywhere” soundness (ae-SND):

oot A Teemg(D) : Ave ()< e 7 he N

(Vo Idy s SIS IV Y I TT..

1 N\
o 1 i 2

No N
“Infinitely-often” soundness (i0-SND):

Yeer A Eemo—gQO\ ‘- Ab\/si(k\ < E(ﬁ

What Do We Mean by “Weak” Insecurity? .-,

s
N\

(HPLICS
PE | , .. =
(.2\ :=infinitely-often soundness (io-SND) | | :i:iiiiiiiiiiississsss
N/ &ND '

Traditional “almost-everywhere” soundness (ae-SND):

oot A Teemg(D) : Ave ()< e 7 he N

(Vo Idy s SIS IV Y I TT..

1 N\
o 1 i 2

No N
“Infinitely-often” soundness (i0-SND):

Yeer A Eemo—gQO\ ‘- Ab\/si(k\ < E(ﬁ

k infinite set
of parameters

What Do We Mean by “Weak” Insecurlty’?

/&Nb

(HPLICS
. | , .. =
(.21 :=infinitely-often soundness (io-SND) | | :::iiiiiiiiiiiiiiiaaiissis
N~ /&b

Traditional “almost-everywhere” soundness (ae-SND):

V?PT A REQMBQ(*\ '- Ab\/;be\ < 863 \/ >\ c N

(Vo Idy s SIS IV Y I IIAITIIITT7...

2 N\
L 1 L

No N
“Infinitely-often” soundness (i0-SND):

i o07 A Egemsr—g@(*\ Ab\fs,«b(x\ = 505

N infinite set , / / ~
of parameters , . , 15

\1 M R3 N N
E=[N, >Z'>\3\,\4__,}

What Do We Mean by “Weak” Insecurlty’?

/&Nb

o | O, ¢—
() :=infinitely-often soundness (io-SND) | | i
N~ 78&N\D

O

d = Pelylogh

Traditional “almost-everywhere” soundness (ae-SND):
Yo A 5 EemgQ(k\ 1 Ab\/sfb 0\ = 5@» 7 \e N Cryptographers do find i.0. security interesting:

(Vo Idy s SIS IV Y I TT..

2 N\
[o 1 L

No N
“Infinitely-often” soundness (i0-SND):

Forr A Jeemp(d) : Abvm(x\ c £

N infinite set , / / ~
of parameters , . ! 15

\1 M N3 A\
E=lNg 2 X3 N

What Do We Mean by “Weak” Insecurity? :-.

\ /&Nz>

- O.. <—
() :=infinitely-often soundness (io-SND) | | i
N~ 78&N\D

d = Pelylogh

Traditional “almost-everywhere” soundness (ae-SND):
Yo A 5 EemgQ(*\ : Ab\/j (\\ < E@B 7 \e N Cryptographers do find i.0. security interesting:

A Note on Non-Interactive Zero-Knowledge from CDH

(Vo Idy s SIS IV Y I TT..

- > Universie Party Cith, CNRS, IRIF Jh‘ﬁﬁ?ﬁ?“gw Fhengtone Jin®
Mo N Northensteivers
“Infinitely-often” soundness (io-SND): [CRYPTOQO ’23]: builds i.0.-SND NIZKs from sub-exp CDH.
Forr A Jeemp(h) : Asz,Nb(*\ < (%)
‘K infinite set / / / ~
of parameters . , : : ; 15
M 5 h3 A\

E=lNg 2 X3 N

What Do We Mean by “Weak” Insecurity? :-.

\ /&Nz>

(HPLicS

- S =
*+\ :=infinitely-often soundness (io-SND) ‘ L lllllliiiitesesecseses

_— ' 1 FRASARSRNWEY WWIRWIL VYW HITWIT YWY UY IR | I ass R NN NN RN N RN RRERRRRRNY X
N~ 7 &ND

d = Pelylogh

Traditional “almost-everywhere” soundness (ae-SND):
Yo A 5 EemgQ(*\ : Ab\/j (\\ < E@B 7 \e N Cryptographers do find i.0. security interesting:

A Note on Non-Interactive Zero-Knowledge from CDH

(Vo Idy s SIS IV Y I TT..

* Geoffroy Couteau” Abhishek Jain® Zhengzhong Jin *
®- 1 Lt Université Paris Cité, CNRS, IRIF Johns Hopkins University MIT
)o M Willy Quach®
Northeastern University
1 i 9 : . '23]: builds 1.0.- -
Infinitely-often” soundness (IO-SN D) [CRYPTO ’23]: builds i.0.-SND NIZKs from sub-exp CDH.
On the Possibility of Basing Cryptography on EXP # BPP || One-Way Functions and pKt Complexity
T : X)
?(‘3 (kA E'e MBQ (>\\ SND (X\ 4 8 (Yanyi Liu Rafael Pass*
k . f t t YICQ(;IGHGGC}ICErI::irlS.iZiu rafael(ifiocr;1 .eilo’fs(;}il.edu Shuichi Hirahara* Zhenjian Luf Igor C. Oliveira?
fln Inite ste / / /
ram r ¢ " .
of parameters : : | - 15 [CRYPTO ’21,TCC ’24]:
M [R3 N N

) connect 3 of 1.0.-OWF to certain worst-case assumptions.
E=lNg 2 X3 N

Our Results

(continued)

Our Results

(continued)

Motivating question for next result:
Let 1 be an IVC (e.qg., secure at O(1) depth).

Our Results

(continued)

Motivating question for next result:
Let 1 be an IVC (e.qg., secure at O(1) depth).

Our Results

(continued)

Motivating question for next result:
Let 1 be an IVC (e.qg., secure at O(1) depth).

Our Results

(continued)

Motivating question for next result:
Let 1 be an IVC (e.qg., secure at O(1) depth).

SN D O

Case 1: security everywhere.

Our Results

(continued)

Motivating question for next result:
Let 1 be an IVC (e.qg., secure at O(1) depth).

OB OO, OBl O 0. O, OLO.. O

................. 0000000000000000000000'. ¢
| i R e R
O(1) O(log?(\) OWAN O\

Case 1: security everywhere.

Our Results

(continued)

Motivating question for next result:
Let 1 be an IVC (e.qg., secure at O(1) depth).

Case 1: security everywhere.

Our Results

(continued)

Motivating question for next result:
Let I'1 be an IVC.

Our Results

(continued)

Motivating question for next result:
Let I'1 be an IVC.

=
P

NN T EE RN oooo..QQQOOOQ.QQ.Q.C.Q‘. %>
‘ EE N R R RN N R R R R R RN RN R XXX I L1
............ EE NN R R RN RN R R R R RN RN R NI I IL L.
O(1) O(log?(A)) OWMN)

Case 2: insecure somewhere.

Our Results

(continued)

Motivating question for next result:
Let I'1 be an IVC.

SN

—
NN

| LN

' s 0000000000 AN NEEENE N NN RERENR RN R RN NI 1. ‘o444
| Issatsssssssssses
O(1) O(log?(N)) OWN O\

Case 2: insecure somewhere.

Our Results

(continued)

Stronger
adversary

o~

Motivating question for next result:
Let I'1 be an IVC.

Case 2: insecure somewhere.

Our Results

(continued)

Stronger
adversary

o~

Motivating question for next result:
Let I'1 be an IVC.
r

Weaker

adversary @
b

Case 2: insecure somewhere.

Our Results

(continued)

Stronger
adversary

o~

Motivating question for next result:
Let I'1 be an IVC.
r

Weaker

adversary @
b
NN NN R R EENENENEENE NN E R R NN R X X
ooooooooooo EENNNEEENENNEEENNEENNEER X
[/// ‘ ooooooooooo EENNENENENENENENNENERENE R R QR X

_ 01 O(log?(\))
V< ply®, Vel with Tine (A)e T D log*™
Abu(%\@tbﬁ?'m =iXiﬂ e NEGL.

Case 2: insecure somewhere.

Our Results

(continued)

- = = Stronger
Motivating question for next result: [sersan
Let 1 be an IVC.

Weaker/—\
adversary @
my EREENEENEEE NN R R R R R R R A0 2 1)1,
K l ooooooooooo EENNEENENENNNENEEERERRNRR R NI I
ooooooooooo EENNEENENENNNEERERRENNR SR NI 1)

O(1 O(log3(A
V< ply®, Vel with Tine (A)e T g log*h)
Abu()\@l_}'é??‘” =iXi§] e NEGL.

Case 2: insecure somewhere.

Our Results

(continued)

- = = Stronger
Motivating question for next result: [sersan
Let 1 be an IVC.

Weaker <
adversary @
my EREENEENEEE NN R R R R R R R A0 2 1)1,
K l ooooooooooo EENNEENENENNNENEEERERRNRR R NI I
ooooooooooo EENNEENENENNNEERERRENNR SR NI 1)

O(1 O(log3(A
V< ply®, Vel with Tine (A)e T g log*h)
Abu()\@l_}'é??‘” =iXi§] e NEGL.

Case 2: insecure somewhere.

(), WEINTSLY
Fa poy PO, WANY A-S

Our Results

(continued)

- = = Stronger
Motivating question for next result: [sersan
Let 1 be an IVC.

Weaker - ? ? ?
adversary @ : e ——.
&Nb' EENENEEENNENEE R R R R R R R I
........... EENENNEENENNNRRNRNR Y I

[/// ‘ EEENENEENNENENEERRERE R XX X

_.0(1) O(log®(A)
= > \ Vel with .T’N'(:ASA i, -— W T Z
V PQQH \ Avy =™ =O(iﬂ e NeGL. Ey ="'.>o—03(>~\\d e @_’-r

- Ab‘fz\ (N @ [pepH = \ﬂ NoN-NEGL .
Case 2: insecure somewhere.

(), WEINTSLY
Fa pdy PO, WANY A-S

Our Results

(continued)

- = = Stronger
Motivating question for next result: [sersan
Let 1 be an IVC.

Weaker <
adversary @
my EREENEENEEE NN R R R R R R R A0 2 1)1,
K l ooooooooooo EENNEENENENNNENEEERERRNRR R NI I
ooooooooooo EENNEENENENNNEERERRENNR SR NI 1)

O(1 O(log3(A
V< ply®, Vel with Tine (A)e T g log*h)
Abu()\@l_}'é??‘” =iXi§] e NEGL.

Case 2: insecure somewhere.

(), WEINTSLY
Fa poy PO, WANY A-S

Our Results

(continued)

- = = Stronger
Motivating question for next result: [sersan
Let 1 be an IVC.

Weaker/—\
adversary @ ; o
&Nb' ooooo ENENENEE NN NN RN RN R R X 1
ooooooooooo EENEEENENENENEEREEENEENN R I
[/// l EEENENENENENE RN RN R R X 1

_od O(log2(\)
VT =ply®, Yl with Time(A)e T W g™
Abu()\@l_}'é??‘” =iXi§] e NEGL.

Case 2: insecure somewhere.

(), WEINTSLY
Fa poy PO, WANY A-S

Our Results

(continued)

- = = Stronger
Motivating question for next result: [sersan
Let [1 be an IVC.

Weaker/—\
adversary @ ;
my &i EEE NN NN NN N NN R R RN XX X
........... EENENNEENENNNRRNRNR Y I
[/// ‘ EEENENEENNENENEERRERE R XX X

— 0O() O(log?(M) d'mid
—oly(\ \VJ with Time (A)e T _ — .
v Py \ Abu(x\@[}e?"’%@(i\] o NEGL. K =f°aﬂ(*\c4 with rméﬁ,"'

- Ab‘fz\ (N @ [pepH = \ﬂ NoN-NEGL .
Case 2: insecure somewhere.

(), WEINTSLY
Fa poy PO, WANY A-S

Our Results

(continued)

- = = Stronger
Motivating question for next result: [sersan
Let [1 be an IVC.

Weaker/—\
adversary @ ;
my &i EEE NN NN NN N NN R R RN XX X
........... EENENNEENENNNRRNRNR Y I
[/// ‘ EEENENEENNENENEERRERE R XX X

— 0O() O(log?(M) d'mid
—oly(\ \VJ with Time (A)e T _ — .
v Py \ Abu(x\@[}e?"’%@(i\] o NEGL. K =f°aﬂ(*\c4 with rméﬁ,"'

- Ab‘fz\ (N @ [pepH = \ﬂ NoN-NEGL .
Case 2: insecure somewhere.

(), WEINTSLY
Fa poy PO, WANY A-S

Our Results

(continued)

- = = Stronger
Motivating question for next result: [sersan
Let 1 be an IVC.

Weaker/—\
adversary @ ;
&Nb' ooooo ENENENEE NN NN RN RN R R X 1
ooooooooooo EENEEENENENENEEREEENEENN R I
[/// l EEENENENENENE RN RN R R X 1

. 0() O(log?(A)) d'mid
VTz?aQyC‘r\ Vd with Time (A)e T oy d
Abu(ﬂ@tbs?-r” = {X‘.{)] ¢ NEGL. v, () =

Case 2: insecure somewhere.

(), WEINTSLY
Fa poy PO, WANY A-S

Our Results

(continued)
- = = Stronger
Motivating question for next result: [sersan
Let 'l be an IVC.
Weaker/—\
adversary @ ‘
wy ﬁi ooooo EENENENEE NN NN R R R R R XX X
........... EENNENEENNNENRNR RN I
[/// ‘ ooooooooooo EENENENNNENEEEREERERERERE R X X
. 0O(1) O(log?(A)) d'mid
VT:PaQyG\ Vol with Time (A)e T Avv () » & —_ T T
y TH = : L. p = PO 3 s %CX\\‘A with "‘”‘“é‘{xé‘ :
As ‘AG\@IPE? :4 {X‘.{)] ¢ NEG w"‘fﬁ ?': w(?) F Ab\a (}:\ @[bé? - ‘CQ‘XI NoN-NEGL .
Case 2: insecure somewhere. 5 got “worse” o ,
adversary ~ Ab\.{{ 0‘5 > -‘525..)

(), WEINTSLY
Fa pdy PO, WANY A-S

Our Results

(continued)
- = = Stronger
Motivating question for next result: [sersan
Let ['1 be an IVC.
Weaker T
adversary @ ‘
wy ﬁi ooooo EENNENENNENENEENENERENERE R R X
K ‘ EENENENEEENEEEENEEENEEEE I L.
ooooooooooo AR EEEEEEEEEEEE LI
. 0(1) O(log?(A)) A'md d'mid
VT:PﬁQHG*\\ ‘V(LA with .T"”‘“-(‘,‘&\‘ e As O‘\ 1 —_— T (Xz_"i’.
) ™=04)] s NeL. V2 5my AT pol) d with T ()2 T \
Aoy ()P=? u)] ie weg B I Ao (@B (3] nowwiiz
Case 2: insecure somewhere. 5 got “worse” o (
adversary ~ Ab\.{(0‘5 > 752;)

(), WEINTSLY
Fa pdy PO, WANY A-S

Our Results

(continued)
- = = Stronger
Motivating question for next result: [sersan
Let ['1 be an IVC.
Weaker T
adversary @ ‘
wy ﬁi ooooo EENNENENNENENEENENERENERE R R X
K ‘ EENENENEEENEEEENEEENEEEE I L.
ooooooooooo AR EEEEEEEEEEEE LI
. 0(1) O(log?(A)) A'md d'mid
VT:PﬁQHG*\\ ‘V(LA with .T"”‘“-(‘,‘&\‘ e As O‘\ 1 —_— T (Xz_"i’.
) ™=04)] s NeL. V2 5my AT pol) d with T ()2 T \
Aoy ()P=? u)] ie weg B I Ao (@B (3] nowwiiz
Case 2: insecure somewhere. 5 got “worse” o (
adversary ~ Ab\.{(0‘5 > 752;)

(), WEINTSLY
Fa pdy PO, WANY A-S

Our Results

(continued)
- = = Stronger
Motivating question for next result: [sersan
Let ['1 be an IVC.
Weaker T
adversary @ ‘
wy ﬁi ooooo EENNENENNENENEENENERENERE R R X
K ‘ EENENENEEENEEEENEEENEEEE I L.
ooooooooooo AR EEEEEEEEEEEE LI
. 0(1) O(log?(A)) A'md d'mid
VT:PﬁQHG*\\ ‘V(LA with .T"”‘“-(‘,‘&\‘ e As O‘\ 1 —_— T (Xz_"i’.
) ™=04)] s NeL. V2 5my AT pol) d with T ()2 T \
Aoy ()P=? u)] ie weg B I Ao (@B (3] nowwiiz
Case 2: insecure somewhere. 5 got “worse” o (
adversary ~ Ab\.{(0‘5 > 752;)

(), WEINTSLY
Fa pdy PO, WANY A-S

Our Results

(continued)

We call this (potential) pattern in IVC
graceful security degradation

Motivating question for\next result: /T adversary
Let ['1 be an IVC.
P

Weaker

adversary @ ‘
wy ﬁi ooooo EEENEEENNE NN N R R R R R AR L.
[/// ‘ EEENENEENENNEEEEER R R X I
oooooooooo EENENNENENENEE N R R R R RN R X I
O(1 O(log3(A ’hi ’m
VT:P“QHG\ Vd with Time(4)e T b oot o / o l A — T
Abub\@tb'é??‘ﬂsix:ﬁﬂ o NEGL. by, () = 5y A- F"Qf’é\‘d with Tims @‘-" (ﬁﬂ
: i p's w(r) Avs, (W) @ID=p =) Ronaicte.
Case 2: insecure somewhere. P 9ot worse” from 40 ,
adversary ~ Ab\.{{ 0‘5 > -‘525..)

TR ¢\ wEINTELY
Pdy PO, WANY M-S

Our Results ©: Can an IVC exhibit it?

We call this (potential) pattern in IVC
(continued)

graceful security degradation

Motivating question for\next result: /T adversary
Let ['1 be an IVC.
P

Weaker

adversary @ p.
[/// |&m' ooooo ”:..........’.'......."'..
.......... EENNNEENNEERNNRRN RN X X
oooooooooo EENENEENENENNEEEE R RN R LA X 1
O(1 O(log3(A “mi mi
V=L, Y with Time(A)e T " oo o i " |
Aoy (V@[=06 is weaL M) 2 ~
. Wit o' = w(p) Ab\f& (}I\
Case 2: insecure somewhere. p got “worse” from
MY Aeg()s by

TR (), WE NS
Py PO, WANY A-S

A practical framing around graceful sec. degradation:

Our Results

(continued)

We call this (potential) pattern in IVC
graceful security degradation

Stronger
adversary

-

Motivating question for\next result:
Let I'1 be an IVC.
r

Weaker
adversary @ ‘.
WS “i...'.......'.’.‘..‘..'...
[/// ‘ EEEEE RN NN RN N R R AR R 2 XL
oooooooooo EREENEEENE NN E NN R R R R 00X L
O(1 O(log?(A d'mi d'mi
VT:P“%G‘\ Vd with Time(4)e T b oot d / d | o — _
Abub\@[,w?-ru:@(iﬂ o NEGL. by, O =) A- F”Qf’é\‘d with Tims é‘{x"—" .
_ W TH ?' - W(F) ABYA (i\ @[&‘P‘TH =d)‘>] NoN-NSGL .
Case 2: insecure somewhere. ¥ got “worse” from ,
adversary ~ Ab\f‘ O» > B

TR (), WFINTSLY
Py PO, HANY M-S

A practical framing around graceful sec. degradation:

~ better and better inverse poly-s

Our Results

(continued)

We call this (potential) pattern in IVC
graceful security degradation

Stronger
adversary

-

Motivating question for\next result:
Let I'1 be an IVC.
r

Weaker

adversary @ ‘ .
&Nb' o0000000000000000000000..
K ‘ EENNNENENNENEEEEREE RN R I
ooooooooo EENNENNNENENENNNEEREEENE R R X I
—. 0(1) O(log?(N)) d’'mid d'mid
T = ol (N \‘V’u{ with Time (A)e T - _
V ?“Q& \ Abub\@[,‘f?”” =O(i3] i NegL. AL‘QO\ - %'-(*\ 37’?’&“’6\“4 oot Time @Xé - .
_ W TH ?'-: W(F) ABYA ():\ @[&?TH =d)‘> NoN-NCGL .
Case 2: insecure somewhere. 5 got “worse” o ,
adversary ~ Ab\./(()‘> -~ 752;)

TR ¢\ wEINTEeLY
Pdy PO, WANY M-S

A practical framing around graceful sec. degradation:

~ better and better inverse poly-s

Our Results

(continued)

And cryptographers do sometimes work with inverse poly sec.
We call this (potential) pattern in IVC
graceful security degradation

Motivating question for\next result: /T adversary
Let ['1 be an IVC.
P

Weaker

adversary @mh N Ns NL\

‘' s 000000 Ce s st RROOOOOOOOORRYS 0906000 PO DD

[//’ | iiiiiiainiieiiseesseeeeseeseseeseessseetitiey:

. 0O(1) O(log#(\)) d'md d'mid oA O\
T ey, VA with Time(A)e T . B
V ?"Q& \ Ab‘.’AO\@IPE?TH'qu] e NEGL. AL‘QO’\ - %'-0“\ 37: FD%(%\“A with '}m'é‘{xé . .
] W T ?' - W(F) ABYA ():\ @(_TBE'PTH =d)k>] NoN-NCGL .
Case 2: insecure somewhere. GOt worser from (
adversary e A b\f‘ O» TN

TR ¢\ wEINTEeLY
Pdy PO, WANY M-S

Our Results

(continued)

We call this (potential) pattern in IVC
graceful security degradation

Motivating question for\next result:
Let I'1 be an IVC.
r

Weaker

adversary @
b

' s 0 0 @ ‘o000000000‘...“"...'...
K ‘ EENNNNENENENEENEEENEEREEEREEEREEER R L.
ooooo NENEENENEENENENEENEEEEEEREEEEEEEEEL L.
O(1 Ofl 2(\ ”mi ,mi
VTr?“QSG*\VJ with Time (L) T D oot o /‘d d
Ay (N @[p=rT =O(i3] ig NeqGL. by)

Case 2: insecure somewhere.

A practical framing around graceful sec. degradation:

~ better and better inverse poly-s

And cryptographers do sometimes work with inverse poly sec.

s may offer tradeoffs to practitioners.

4
Stronger
/—\ adversary

the perspective of

(
adversary ~ A b\f‘ O‘} > "529

TR ¢\ wEINTEeLY
Pdy PO, WANY M-S

A practical framing around graceful sec. degradation:

~ better and better inverse poly-s

Ou r Resu ItS Q: Can an IVC eXhlblt It? And cryptographers do sometimes work with inverse poly sec.

We call this (potential) pattern in IVC

(CO ntinued) graceful security degradation | 1?zzzsssssssszsseszsszszssssssssssssssssiss may offer tradeoffs to practitioners.
= = = Stronger
Motivating question for\next resulit: [acversary
Let I'1 be an IVC.
Weaker <
adversary @ g
Wf “;.‘........’.'......."'..
[/// | EENNENNENENENENNENEEREEREENER R R I |
......... EE RN R N R N RN
. O(1) O(log?(A)) d'mia d'mid
T ooy, ¥ with Time (A)e T _
VT-pl0) Ay (N@PE?™=04)] s nvege. Avy, 0N = 35 A7 pol) A with e ()2 T
_ Wt ?':w(?) Ab\g‘ (i\ @[bE?TH =(()'~>] NoN-NSGL .
Case 2: insecure somewhere. o got “worse” fom |
IZldvelorsary ~ 4 b\.{‘ (”3 Z D%
TR Pq@ ?(-)(wFl;;;c‘;O; »

Result (“no free snack” theorem):
Let Il be an IVC. Then:

A practical framing around graceful sec. degradation:

~ better and better inverse poly-s

Ou r Resu ItS Q: Can an IVC eXhlblt It? And cryptographers do sometimes work with inverse poly sec.

We call this (potential) pattern in IVC

(CO ntinued) graceful security degradation | 1?Kzzzsssssszszzssszsszszszszzssssssssisssii may offer tradeoffs to practitioners.
= = = Stronger
Motivating question for\next resulit: /T adversany

Let 1 be an IVC.
i

Weaker

adversary @ ‘
MH “i......................'..
[/// | EEEENEEREEE NN R R R R L A 00 Q.
oooooooooo EEEEEENNENEE N R R R AR 0 0 Q1L
O(1 O(log?(A d'mi d'mi
ey, Vel ith Toalcie 7 OO o) Wi ()T
Ay (N@P=P™=04)] ie NegL. MOz ey T poll) o i T (e y
- \MW?%w@> ANQOA@JbﬁﬂFOO&L%wMQL
Case 2: insecure somewhere. 7 got “worse” from ,
adversary ~ Ab\.ﬁ ("5 > B
For oy PO wEITEL

Result (“no free snack” theorem):
Let Il be an IVC. Then:

- either I'l Is secure at arbitrary polynomial depths,

A practical framing around graceful sec. degradation:

~ better and better inverse poly-s

Our Results

And cryptographers do sometimes work with inverse poly sec.
We call this (potential) pattern in IVC

(Co nti N ued) graceful security degradation {;;;;;;;;;;;;;g;;;;;;;5;5535555555;;5;5;55 may offer tradeoffs to practitioners.
= = = Stronger
Motivating question for\next resulit: /T adversany

Let 1 be an IVC.
i

Weaker

adversary @ ‘
wy ﬁi ooooo AR ENENEENENE NN RN R R R X2 X Q.
[/// ‘ EENEEENENEEE N R RN R R R X X J
oooooooooo EENENNENENENEE N R R R R RN R X I
O(1 O(log3(A d’mi d'mi
ey, Vel ith Toalcie 7 OO o) W Tina d) T
Asy ()@p=rm=04)] e NegL. b py T polhG) ol et T (T .
] W TH ?' - w(r) Ab\a ():\ @[be‘?TH =d\>] NoN-NTGL .
Case 2: insecure somewhere. 5 got “worse” o (
adversary ~ Ab\.{{ 0‘5 > -‘525..)
For oy PO wEITEL

Result (“no free snack” theorem):
Let Il be an IVC. Then:

- either I'l Is secure at arbitrary polynomial depths,
» or Il cannot exhibit graceful security degradation.

Our Results

(continued)

Our Results

(continued)

L\FT?
m 7
) @

d ‘D:w@>

Our Results

(continued) e

NB: We are interested in:
- black-box lifting results,
- and that preserve performance.

Our Results

(continued) e

NB: We are interested in:
- black-box lifting results,
- and that preserve performance.

Our Results

(continued) e
&
NB: We are interested in: ‘s eece0 000 secsccccccccsooeee

- black-box lifting results,

- and that preserve performance.)
d
— | Theorem (sublinear depths):
lve 3 IVC M SND at depth A (for some £>0)
@ = 3 IVC I’ SND at arbitrary depth.
B TSRS R A ' - $3es Overhead for P/V/proof size in T’ is O)\(1).

\E
(620)

Our Results

(continued) e

NB: We are interested in:
- black-box lifting results,
- and that preserve performance.

d
L —5 T Theorem (sublinear depths):

Ive 've 3 IVC N SND at depth A¢ (for some £>0)
@ @ = 3 IVC I’ SND at arbitrary depth.

e e s e s e e sassasssseses] | Overhead for P/V/proof size in IT'is (1)
............ ooooooo:QQQQQQCOOQOOOOOQ:CQC‘

N P40

(€20)
|
'T'?ve. _ﬁ lT';'ve

‘s e e e 000000 EEENEENEEEENENENEEEENEINI I
............ SO0 OONOOOOOONYS
............ EE N EEEEEEEEEEEXEIIII.

o

“ 90

Our Results

(continued) e

NB: We are interested in: ‘© 0000000080 R EE R XXXy
- black-box lifting results, Dol b £ b ool

d

- and that preserve performance.

Theorem (sublinear depths):

|
|
-mve 3 IVC M SND at depth A (for some £>0)
@ = 3 IVC I’ SND at arbitrary depth.

‘e 000000080 EEEEREEEREXXXX Overhead for PN/prOOf sizeinllis 0)\(1)-

N
(620)

o

Our Results

(continued) e
&
NB: We are interested in: e s e e e see e seccsccscccnree

d

- black-box lifting results,
- and that preserve performance.

Theorem (sublinear depths):

|
|
-mve 3 IVC M SND at depth A (for some £>0)
@ = 3 IVC I’ SND at arbitrary depth.

‘' e 00000000 EEEEEREEXXXX) . Overhead for PN/prOOf sizeinl is 0)\(1)-

(620)

Theorem (general lifting):

m. =» 3 IVC I SND at depth d
© = 3 IVC I’ SND at depth D = d~.
+ SRS RS T AT AR FESERN S Overhead* for P/V/proof size in I'T’ is Ox(p)

o

can be w(1).

Our Results

(continued) e
&
NB: We are interested in: e s e e e see e seccsccscccnree

d

- black-box lifting results,
- and that preserve performance.

- | Theorem (sublinear depths):
lve 3 IVC N SND at depth A¢ (for some £>0)
@ = 3 IVC I’ SND at arbitrary depth.

R —— c 0000000000080 4 |Overhead for P/V/proof size in I’ is Ox(1).

(620)

Theorem (general lifting):

Ive 3 IVC N SND at depth d
© = 3 IVC I’ SND at depth D = d~.
+ SRS RS T AT AR FESERN S 353 Overhead* for P/V/proof size in I'T’ is O\(p)
ooooooooooo EENNENENNNENNNE N
|
tized ti lies for linear Tp([
dJ canbe w(t). B O onal pollog overhead). T !

Our Results

(continued) e
NB: We are interested in: ‘' e 000000080 R XXX
- black-box lifting results, S eofiode: b8 bt b
- and that preserve performance.)
d
— S Theorem (sublinear depths):
lve 've 3 IVC M SND at depth A (for some £>0)
@ @ = 3 IVC I’ SND at arbitrary depth.
IIIIIIIIIIIe00000222222222222228338R) (Overhead for P/V/proof size in T is Ox(1),
........... ooo00000:000.00'..‘.'..“:.‘.‘
N P4 ()
(£>0)
Corollary:
IVC SND at O(1 -y)
3 VG P SND o8 c?le=p>th D = poly. o Theorem (general lifting):
e TP 3 IVC N SND at depth d
© = 3 IVC I’ SND at depth D = d~.
i 2333333333331 |Overhead® for P/V/proof size in IT' is Os(p)
........... ..oozooooooco 00000
J F oms: pcanbe uin). fmortized prover time: apples for Inea T

Our Results

(continued) e
NB: We are interested in: ‘ e 000000080 R R XXX XXIXIX
- black-box lifting results, S eofiode: b8 bt b
- and that preserve performance.)
q
- S Theorem (sublinear depths):
v 've 3 IVC N SND at depth A¢ (for some £>0)
@ @ = 3 IVC I’ SND at arbitrary depth.
St asessaseasessessssessesy | Overhead for P/V/proot size in I is Ox(1).
........... sececee 0:0000000000000000:0000) 3OO O
» PA0)
(€50)
Corollary:
3 [IVC SND at O(1 FIx .
3 VG P SND o8 c?le=p>th D = poly. o Theorem (general lifting):
T e =P 3 IVC M SND at depth d
| @ = 3 IVC I’ SND at depth D = dbr.
Special case: d = O(1); p = O(logA)
Rt doobdit it b 41>+ 1 esssssss8888] O Vernead™ for P/V/proof size in I" is Ox(p)
........... 00000‘0000000. 906000 YerYate:
J oBs: poanvewit). " gmortized prover time; appiies for Inear Te(M

When Do Our Results Apply?

For what security notions do they hold?

jo-sec at D = sec at d = o(D)

(HPLIcS /
O, t— ‘Fu
\ 55555555555555:?}555?55
o) d'= Poylogd D

Insecure IVCs cannot exhibit graceful sec. degradation

©.0.0.0. 0.0.0.0.0.0.0. 0.
NOT | R sasiaaReattuts SN — NOT1 HHEHS

Black-box lifting with low overhead

|
rﬁ:lve. lT,;]ve’
InnnnIIsasasess ..:::gggggg

] D=4

When Do Our Results Apply?

For what security notions do they hold?

jo-sec at D = sec at d = o(D)

e Soundness for deterministic and non-deterministic computations: O, t— T

o dr?:foﬁﬁb

Insecure IVCs cannot exhibit graceful sec. degradation

@@@@@@@@@@@@
NOT | iiiiiiiiiiiiissasiisssssssssssssssissstyl — NOT1 R

Black-box lifting with low overhead

|
rﬁ:lve. lT,;]ve’
PR o0
=d

J D=df

When Do Our Results Apply?

For what security notions do they hold?

jo-sec at D = sec at d = o(D)

. e g . e g . (MPLcS <7,
* Soundness for deterministic and non-deterministic computations: @m G D
i sssssssssseeee 0000000000000000 .
- All results apply W ..::::::::::‘:::::85
O dr?@%ﬁﬁb D

Insecure IVCs cannot exhibit graceful sec. degradation

. O.B. O©.O.O. @ @ @ @ |
NOT | riiiiiiiiiiiisiesesssssssesssssss => NOT | e sessssssssssss]
4

Black-box lifting with low overhead

I-ﬁ:'ve _—_—"_s lT,;]ve.

When Do Our Results Apply?

For what security notions do they hold?

jo-sec at D = sec at d = o(D)

. e g . e g . (MPLcS <7,
* Soundness for deterministic and non-deterministic computations: @m G D
e ssssssssssssnee 00000000000000O0OOOY +e
 All results apply ‘ e ::::3:::3838‘333333§ £33
O dr?@%ﬁﬁb D

e Evaluation Binding for Incremental Functional Commitments (next slides)

Insecure IVCs cannot exhibit graceful sec. degradation

@@@@@@@@@

1N
— ..)00 QA 1 'A.....oooo0l...O.........................:
.o 0 00000 DR NN
NOI ‘ _””””“:::“"..... 40000 ﬁ NOI ‘............::::::::::::uuuooooooooooom

I-ﬁ:'ve _—_—"_s lT,;]ve.

e =

000000000000000000ONRIIDNN
o'......'s 444
zo 0000000000...:...‘...‘
J D=4/

When Do Our Results Apply?

For what security notions do they hold?

jo-sec at D = sec at d = o(D)

. e g . e g . (MPLcS <7,
* Soundness for deterministic and non-deterministic computations: @m G D
e ssssssssssssnee 00000000000000O0OOOY +e
 All results apply ‘ e ::::3:::3838‘333333§ £33
O dr?@%ﬁﬁb D

e Evaluation Binding for Incremental Functional Commitments (next slides)

 All results apply
Insecure IVCs cannot exhibit graceful sec. degradation

@@@@@@@@@

1N
— ..)00 QA 1 'A.....oooo0l...O.........................:
.o 0 00000 DR NN
NOI ‘ _””””“:::“"..... 40000 ﬁ NOI ‘............::::::::::::uuuooooooooooom

I-ﬁ:'ve _—_—"_s lT,;]ve.

e =

000000000000000000ONRIIDNN
o'......'s 444
zo 0000000000...:...‘...‘
J D=4/

When Do Our Results Apply?

For what security notions do they hold?

jo-sec at D = sec at d = o(D)

. e g . e g . (MPLcS <7,
* Soundness for deterministic and non-deterministic computations: @m G D
Y R R R XX 0000000000000 OOOOIY)@ e
 All results apply ‘ H ey 2:::3::3:838}33335 £33
O dr?@%ﬁﬁb D

e Evaluation Binding for Incremental Functional Commitments (next slides)

 All results apply
Insecure IVCs cannot exhibit graceful sec. degradation

e Extractability

@@@@@@@@@

NOT | oiiiiiiiiiiaseses §§§b=> N O T | i s s s sssssses]

Black-box lifting with low overhead

m. = M,
© ©

s0 0: ***00
0000000000000000000000000 **000
0000000000000.0000.....
=d

J D=df

When Do Our Results Apply?

For what security notions do they hold?

jo-sec at D = sec at d = o(D)

. e g . e g . (MPLcS <7,
* Soundness for deterministic and non-deterministic computations: @m G D
Y R R R XX 0000000000000 OOOOIY)@ e
 All results apply ‘ H ey 2:::3::3:838}33335 £33
O dr?@%ﬁﬁb D

e Evaluation Binding for Incremental Functional Commitments (next slides)

 All results apply
Insecure IVCs cannot exhibit graceful sec. degradation

e Extractability

» [io-sec at D = sec at d = o(D)] + [black-box lifting], both apply ©.6.6.0. 6.6. C. @ @

NOT | oiiiiiiiiiiaseses §§§b=> N O T | i s s s sssssses]

Black-box lifting with low overhead

m. = M,
© ©

s0 0: ***00
0000000000000000000000000 **000
0000000000000.0000.....
=d

J D-df

When Do Our Results Apply?

For what security notions do they hold?

jo-sec at D = sec at d = o(D)

MPueS <7,

* Soundness for deterministic and non-deterministic computations: @m G D
‘ e ee0ee00022002222882888:
00000000000000000000

 All results apply)
.) 4*?9”3&’3“5 D
e Evaluation Binding for Incremental Functional Commitments (next slides)

 All results apply

Insecure IVCs cannot exhibit graceful sec. degradation

e Extractability

» [io-sec at D = sec at d = o(D)] + [black-box lifting], both apply ©.6.6.0. 6.6. C. @ ©.0.0. C.
NOT | iinnniniinsssssssssssssssssssssssyl s NOT | iy

 the result on graceful sec. degradation does not apply mostly
because definitions do not translate immediately.

Black-box lifting with low overhead

m. = M,
© ©

s0 0: ***00
0000000000000000000000000 **000
0000000000000.0000.....
=d

J D-df

New Notion: Incremental
Functional Commitments

What are Functional Commitments? (FC)

’\.‘."/l ! a‘{ \

‘ <9' A i o
= p,)”;ﬂhp}-m\u.

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

- AR
S ‘“‘)\i.‘fi‘hs’*}-i::\t|.
X1
X2
xl’l
Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

L/
Com(x) —> Cx
>

%!

X ,

02 /I- i3
xn

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

)

Com(x) — Cy

5, >
x|l 3N
X . f Eyl
x,|] =
Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

L/
Com(x) — &

o >
A ER
X ||l 3 £ vy
“NafE: Open(f, x) — ¢ y = f(X)
=R R >

Server (Prover) Client (Verifier)

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

L/
Com(x) —> |Cx

s, >
A ER

= BN L/
X0l 2 . _ /
Sl Zfe: Open(f,x) - 7 y = f(X) i
3 ERPE. .

Server (Prover) Client (Verifier)

Ver(Cyf,y, 7)) = 1

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

short
L S/
Com(x) —> Cx
-, >
=R
5 =N L/
X0l 2 2. /
o = f - Open(f’ X) — ”f y =f(X) /I-'r;‘;.;I
| ERRG > i
Server (Prover) Client (Verifier)

Ver(Cyf,y, 7)) = 1

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

short
L/
Com(x) —> Cx
. >
ER short
5 =) L/
X i . 7
3 fE: Open(f,x) — iy y = f(X) I
SlER R >
Server (Prover) Client (Verifier)

Ver(Cyf,y, 7)) = 1

Credit to Dario Fiore for the graphics in the center.

What are Functional Commitments? (FC)

qf" i
‘.' ; ’\‘." l ! a‘{ \

X ||| short
X, SR L/
S5 Open(fx)—> | 7% y = f(X)
Server (Prover) Client (Verifier)

Ver(Cyf,y, 7)) = 1

Functional commitments generalize polynomial and vector commitments.

Credit to Dario Fiore for the graphics in the center.

Security of Functional Commitments

Evaluation Binding

- -

£
e . P Ay sy T

Client (Verifier)

Malicious Prover

Credit to Dario Fiore for the graphics in the center.

Security of Functional Commitments

Evaluation Binding

Malicious Prover Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

Credit to Dario Fiore for the graphics in the center.

Security of Functional Commitments

Evaluation Binding

X f; ﬂ.fa ya ﬂ]z, y,
YFY

Malicious Prover Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

Credit to Dario Fiore for the graphics in the center.

Security of Functional Commitments

Evaluation Binding

v GEUIRRY

X f; ﬂ.fa ya ﬂ]z, y,

y#FY
Ver(Cyof,¥, 7) = 1
Ver(Cy. £,) = 1
Malicious Prover Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

Credit to Dario Fiore for the graphics in the center.

Security of Functional Commitments

Evaluation Binding

X f; ﬂ:fa ya ﬂ]z, y,

“;«\ -\","/l_ A

- UL ALALE

y#FY
Ver(Cyof,¥, 7) = 1
Ver(C,.f,Y/, nji) =1
Malicious Prover Client (Verifier)

No adversary can succeed in providing inconsistent valid-looking outputs.

NB: intuitively stronger than deterministic and non-deterministic soundness

(bUt weaker than eXtraCtablhty)' Credit to Dario Fiore for the graphics in the center.

Incrementality in Functional Commitments

Motivation

Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

@ wo = Co w1 = C1 Ws—1 ‘= C5—1
2] Z2 A .
: N Al —~— “ o N 6 —1 N f
- @o (&, o) (0o + ter) (" 9(t)
- ——N Fenk N Fenk - —H Fenk ?
A w .

Fcnk(ztpowa yaccj; /(’\) = (Z) tPOW’ Yace * tpow T E)

“Incremental” polvnomial

Incrementality in Functional Commitments

Motivation

Our goal:

committing and (especially) proving should be doable in an incremental manner.

Example applications:

“streaming” polynomial commitments and neural network evaluation.

(1,0) 7 (t,co) J o (t ,Co+t01)\ o s (t ,g(t))} :
: il cnk ’ " Lenk

modeling, canonical construction,
security proofs, connections to other results. Fon (oo e 0 o= (oo o)

“Incremental” polvnomial

Wrapping Up

Summary and, where could one go from here?

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs

 Moderately intriguing findings (at least to me):

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

 Are there others?

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

 Are there others?

* This gives a sufficient condition for security. Concrete ways of using it?

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

* Are there others?
* This gives a sufficient condition for security. Concrete ways of using it?

* Lifting is always possible and does not require extractability (with efficient amortized prover)

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

* Are there others?
* This gives a sufficient condition for security. Concrete ways of using it?
* Lifting is always possible and does not require extractability (with efficient amortized prover)

* The “insecurity” in insecure |VCs “does not quite improve as you move towards the safe zone” (no
graceful security degradation)

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

* Are there others?
* This gives a sufficient condition for security. Concrete ways of using it?
* Lifting is always possible and does not require extractability (with efficient amortized prover)

* The “insecurity” in insecure |VCs “does not quite improve as you move towards the safe zone” (no
graceful security degradation)

 Other open questions:

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

* Are there others?
* This gives a sufficient condition for security. Concrete ways of using it?
* Lifting is always possible and does not require extractability (with efficient amortized prover)

* The “insecurity” in insecure |VCs “does not quite improve as you move towards the safe zone” (no
graceful security degradation)

 Other open questions:

 How to build Incremental Functional Commitments from falsifiable assumptions?

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

* Are there others?
* This gives a sufficient condition for security. Concrete ways of using it?
* Lifting is always possible and does not require extractability (with efficient amortized prover)

* The “insecurity” in insecure |VCs “does not quite improve as you move towards the safe zone” (no
graceful security degradation)

 Other open questions:
 How to build Incremental Functional Commitments from falsifiable assumptions?

 Can we prove the security/insecurity of concrete existing systems (with these or other techniques)?

Thank you! Questions?

Wrapping Up

Summary and, where could one go from here?

* This work: A (mostly combinatorial) investigation of the “structure” of security properties in IVCs
 Moderately intriguing findings (at least to me):

* |VC might be the only primitive where infinitely-often and almost-everywhere security are so
interconnected.

* Are there others?
* This gives a sufficient condition for security. Concrete ways of using it?
* Lifting is always possible and does not require extractability (with efficient amortized prover)

* The “insecurity” in insecure |VCs “does not quite improve as you move towards the safe zone” (no
graceful security degradation)

 Other open questions:
 How to build Incremental Functional Commitments from falsifiable assumptions?

 Can we prove the security/insecurity of concrete existing systems (with these or other techniques)?

Extra slide on graceful sec. degradation

always exists a superconstant depth bound L such that for all i, R; > L.

Theorem 6. Given any sequence of superconstant—i.e., w(1)—depth bounds Ry, R1, Rs, ..., there

Extra slide on 10-soundness

Theorem (Informal statement of Corollary 1). Let II be an IVC scheme and D = w(1) be a
depth bound. Let E C N be an infinite and “exponentially sparse” set of security parameters where I
achieves negligible soundness at depth bound D. Then there exists a depth bound d = w(1) where II

achieves (standard) negligible soundness.

Theorem (Informal statement of Corollary 2). Let II,D = w(1), and E as in the previous
theorem. Then:

o E exponentially sparse —> d = O(logD).
o FE sub-exponentially sparse =—> d = O(polylogD).

Theorem 3. Let E = {\; < Ao < ---} C N be a constructible (25)-sparse set for some T with
0<T <1. Let IT be an IVC that is i.0-sound with respect to E for depth bound D(-). Let d'(-) be a
depth bound. If for all 1 € N,

d' (Aig1 —1) <D (N), (A)

then II is (almost-everywhere) sound for depth bound d' if appropriately parameterized (Definition 3).
The resulting proving time, verification time and proof size are like those originally in II (up to
constant factors).

