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• Anonymous Credentials & Decentralized Identity

• Whitelists

• (Anti-money laundering, reputation validation, access control, etc)

• Anonymous Cryptocurrencies

• ZCash, Monero, Firo, …
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+ more
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• Concretely efficient (results in a couple slides)

• Transparent setup
• Amortization through redundant state of size m (batch size)
• NB: inserting one element is still O(1) in communication! (see paper) 

m
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Strengthened Security (+ Simplified Protocol)  in Curve Botany
Contribution 2 (i.e., in Trees,Forests, etc)

“Strengthened 
Security”?

From a formal point of view 
weak binding → extractability

Strengthening 1: 
Support maliciously-provided 
set commitments 
(applications? see final slide)

Strengthening 2: 
Prevent a form of “grieving” attacks 
(see Section 3 in paper for more)
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• Amortization through forestation
• Forest = redundant representation with distinct sets of Pedersen generators
• After this, the magical random linear combinations fairy does the heavy lifting.

• How much do you amortize?
• Premise: basic cost unit for proving (rectangles above) consist of two steps:

m

“Select” (cheap) + “Rerandomize” (costly)

In Curve Forests: m Rerandomize ops → 1 Rerandomize op
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