
Matteo Campanelli (Offchain Labs)

Curve Forests
Transparent Zero-Knowledge Set-Membership

with
Batching and Strong Security

Mathias Hall-Andersen (ZKSecurity)
Simon Holmgaard Kamp (CISPA Helmholtz Center for Information Security)

(full version here)

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

e.g. (whitelist):  
S = users authorized to perform Foo

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

e.g. (whitelist):  
S = users authorized to perform Foo

e.g. (anonymous payment): 
S = set of existing coins 
(NB: here coins are public, but they do not disclose their owners, etc)

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

e.g. (whitelist):  
S = users authorized to perform Foo

e.g. (anonymous payment): 
S = set of existing coins 
(NB: here coins are public, but they do not disclose their owners, etc)

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

e.g. (whitelist):  
S = users authorized to perform Foo

e.g. (anonymous payment): 
S = set of existing coins 
(NB: here coins are public, but they do not disclose their owners, etc)

Generate prf
“x ∈ S ∧ SomeProperty(x)”

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

e.g. (whitelist):  
S = users authorized to perform Foo

e.g. (anonymous payment): 
S = set of existing coins 
(NB: here coins are public, but they do not disclose their owners, etc)

Generate prf
“x ∈ S ∧ SomeProperty(x)”

(recall: 
Zero-Knowledge  
refers to hiding.)

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

A commitment cm 
to the object x

e.g. (whitelist):  
S = users authorized to perform Foo

e.g. (anonymous payment): 
S = set of existing coins 
(NB: here coins are public, but they do not disclose their owners, etc)

Generate prf
“x ∈ S ∧ SomeProperty(x)”

(recall: 
Zero-Knowledge  
refers to hiding.)

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

A commitment cm 
to the object x

Verify(S, cm, prf)
e.g. (whitelist):  
S = users authorized to perform Foo

e.g. (anonymous payment): 
S = set of existing coins 
(NB: here coins are public, but they do not disclose their owners, etc)

Generate prf
“x ∈ S ∧ SomeProperty(x)”

(recall: 
Zero-Knowledge  
refers to hiding.)

Zero-Knowledge Set Membership
The general problem

A set of objects S 
(the set is usually public)

A commitment cm 
to the object x

Verify(S, cm, prf)X

𝖽𝗂𝗀S

e.g. (whitelist):  
S = users authorized to perform Foo

e.g. (anonymous payment): 
S = set of existing coins 
(NB: here coins are public, but they do not disclose their owners, etc)

Generate prf
“x ∈ S ∧ SomeProperty(x)”

(recall: 
Zero-Knowledge  
refers to hiding.)

Applications of ZK Set Membership

Applications of ZK Set Membership

• Anonymous Credentials & Decentralized Identity

Applications of ZK Set Membership

• Anonymous Credentials & Decentralized Identity

• Whitelists

Applications of ZK Set Membership

• Anonymous Credentials & Decentralized Identity

• Whitelists

• (Anti-money laundering, reputation validation, access control, etc)

Applications of ZK Set Membership

• Anonymous Credentials & Decentralized Identity

• Whitelists

• (Anti-money laundering, reputation validation, access control, etc)

• Anonymous Cryptocurrencies

Applications of ZK Set Membership

• Anonymous Credentials & Decentralized Identity

• Whitelists

• (Anti-money laundering, reputation validation, access control, etc)

• Anonymous Cryptocurrencies

• ZCash, Monero, Firo, …

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Verify(S, cm, prf)X

𝖽𝗂𝗀S

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

(Syntax from last slide, for reference)

A trusted party is not always available. 
(Mind: get to breakfast by 7am 
before they run out, usually 
together with the potato salad)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

(Syntax from last slide, for reference)

An MPC Protocol

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

(Syntax from last slide, for reference)

(The least of your problems during a setup ceremony: 
cryptographers handling circular saws.)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

(Syntax from last slide, for reference)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

(Syntax from last slide, for reference)

Pairings 
([Groth16], 

Verkle Trees (KZG),…)

RSA 
([BCF+21],[CFH+22] …)

Merkle  
Trees

[BCF+21]: Zero-Knowledge Proofs for Set Membership: Efficient, Succinct, Modular (FC21)
[CFH+22]: Succinct Zero-Knowledge Batch Proofs for Set Accumulators (CCS22)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

X
(Syntax from last slide, for reference)

Pairings 
([Groth16], 

Verkle Trees (KZG),…)

RSA 
([BCF+21],[CFH+22] …)

Merkle  
Trees

[BCF+21]: Zero-Knowledge Proofs for Set Membership: Efficient, Succinct, Modular (FC21)
[CFH+22]: Succinct Zero-Knowledge Batch Proofs for Set Accumulators (CCS22)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

X X X
(Syntax from last slide, for reference)

Pairings 
([Groth16], 

Verkle Trees (KZG),…)

RSA 
([BCF+21],[CFH+22] …)

Merkle  
Trees

[BCF+21]: Zero-Knowledge Proofs for Set Membership: Efficient, Succinct, Modular (FC21)
[CFH+22]: Succinct Zero-Knowledge Batch Proofs for Set Accumulators (CCS22)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

X X X
* There are designs w/ similar efficiency metrics, but they pay in generality, simplicity, or how established/safe their cryptographic assumptions are (see USENIX paper).

State of the art*: DLOG-based
Curve Trees 

(same authors, USENIX23)

(Syntax from last slide, for reference)

Pairings 
([Groth16], 

Verkle Trees (KZG),…)

RSA 
([BCF+21],[CFH+22] …)

Merkle  
Trees

[BCF+21]: Zero-Knowledge Proofs for Set Membership: Efficient, Succinct, Modular (FC21)
[CFH+22]: Succinct Zero-Knowledge Batch Proofs for Set Accumulators (CCS22)

Concretely Efficient ZK Set Membership is Hard
Let’s look at its challenges

Usual core requirements are:

Verify(S, cm, prf)X

𝖽𝗂𝗀S

fast proving time small proofs

Extra (but common) requirement: transparent setup
(“No trusted party necessary to generate cryptographic parameters”)

X X X
* There are designs w/ similar efficiency metrics, but they pay in generality, simplicity, or how established/safe their cryptographic assumptions are (see USENIX paper).

State of the art*: DLOG-based
Curve Trees 

(same authors, USENIX23)

Our starting point 
(see next slide)

(Syntax from last slide, for reference)

Pairings 
([Groth16], 

Verkle Trees (KZG),…)

RSA 
([BCF+21],[CFH+22] …)

Merkle  
Trees

[BCF+21]: Zero-Knowledge Proofs for Set Membership: Efficient, Succinct, Modular (FC21)
[CFH+22]: Succinct Zero-Knowledge Batch Proofs for Set Accumulators (CCS22)

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

CurveTree ≈ n-ary Merkle Tree (with specifics)

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

A Curve Tree (simplified)

CurveTree ≈ n-ary Merkle Tree (with specifics)

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

A Curve Tree (simplified)

CurveTree ≈ n-ary Merkle Tree (with specifics)
+ Pedersen Hash

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

A Curve Tree (simplified)

CurveTree ≈ n-ary Merkle Tree (with specifics)
+ Pedersen Hash
+ cycle of curves

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

A Curve Tree (simplified)

CurveTree ≈ n-ary Merkle Tree (with specifics)
+ Pedersen Hash
+ cycle of curves
+ [tricks]

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

A Curve Tree (simplified)

CurveTree ≈ n-ary Merkle Tree (with specifics)
+ Pedersen Hash
+ cycle of curves
+ [tricks]

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

A Curve Tree (simplified)

2. real-world impact

CurveTree ≈ n-ary Merkle Tree (with specifics)
+ Pedersen Hash
+ cycle of curves
+ [tricks]

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

A Curve Tree (simplified)

2. real-world impact
Adopting Curve Trees*:

(imminently?) (soon)*(NB: none of the authors is involved with these efforts—we are aware from public info)

CurveTree ≈ n-ary Merkle Tree (with specifics)
+ Pedersen Hash
+ cycle of curves
+ [tricks]

This Work  
in a nutshell:

Improving Curve Trees 
and specializing it to the

batch setting 
(defined in the next slide)

Curve Trees are a natural choice: 
1. “sandbox for algebraic tricks”

A Curve Tree (simplified)

2. real-world impact
Adopting Curve Trees*:

(imminently?) (soon)*(NB: none of the authors is involved with these efforts—we are aware from public info)

CurveTree ≈ n-ary Merkle Tree (with specifics)
+ Pedersen Hash
+ cycle of curves
+ [tricks]

ZK Set Membership with Batch Proving
Our more specific setting

ZK Set Membership with Batch Proving
Our more specific setting

… }m

ZK Set Membership with Batch Proving
Our more specific setting

… }m

𝖵𝖾𝗋𝗂𝖿𝗒(𝖽𝗂𝗀S, 𝖼𝗆1, …, 𝖼𝗆m, 𝗉𝗋𝖿𝖻𝖺𝗍𝖼𝗁)

ZK Set Membership with Batch Proving
Our more specific setting

… }m

𝖵𝖾𝗋𝗂𝖿𝗒(𝖽𝗂𝗀S, 𝖼𝗆1, …, 𝖼𝗆m, 𝗉𝗋𝖿𝖻𝖺𝗍𝖼𝗁)
Key goal: amortization

ZK Set Membership with Batch Proving
Our more specific setting

… }m

𝖵𝖾𝗋𝗂𝖿𝗒(𝖽𝗂𝗀S, 𝖼𝗆1, …, 𝖼𝗆m, 𝗉𝗋𝖿𝖻𝖺𝗍𝖼𝗁)
Key goal: amortization

T(𝖯𝗋𝗈𝗏𝖾𝖻𝖺𝗍𝖼𝗁) < m ⋅ T(𝖯𝗋𝗈𝗏𝖾𝗌𝗂𝗇𝗀𝗅𝖾)

ZK Set Membership with Batch Proving
Our more specific setting

… }m

𝖵𝖾𝗋𝗂𝖿𝗒(𝖽𝗂𝗀S, 𝖼𝗆1, …, 𝖼𝗆m, 𝗉𝗋𝖿𝖻𝖺𝗍𝖼𝗁)
Key goal: amortization

T(𝖯𝗋𝗈𝗏𝖾𝖻𝖺𝗍𝖼𝗁) < m ⋅ T(𝖯𝗋𝗈𝗏𝖾𝗌𝗂𝗇𝗀𝗅𝖾)
+ similar amortizations 
for verification and proof size

ZK Set Membership with Batch Proving
Our more specific setting

… }m

𝖵𝖾𝗋𝗂𝖿𝗒(𝖽𝗂𝗀S, 𝖼𝗆1, …, 𝖼𝗆m, 𝗉𝗋𝖿𝖻𝖺𝗍𝖼𝗁)
Key goal: amortization

T(𝖯𝗋𝗈𝗏𝖾𝖻𝖺𝗍𝖼𝗁) < m ⋅ T(𝖯𝗋𝗈𝗏𝖾𝗌𝗂𝗇𝗀𝗅𝖾)
Applications? 
Same as before 
(e.g., proving multiple tx-s or identity features at the same time) 
+ more

+ similar amortizations 
for verification and proof size

Our Contributions

A New Construction for Batch Setting—Curve Forests
Contribution 1

m

A New Construction for Batch Setting—Curve Forests
Contribution 1

• Concretely efficient (results in a couple slides)

m

A New Construction for Batch Setting—Curve Forests
Contribution 1

• Concretely efficient (results in a couple slides)

• Transparent setup

m

A New Construction for Batch Setting—Curve Forests
Contribution 1

• Concretely efficient (results in a couple slides)

• Transparent setup
• Amortization through redundant state of size m (batch size)

m

A New Construction for Batch Setting—Curve Forests
Contribution 1

• Concretely efficient (results in a couple slides)

• Transparent setup
• Amortization through redundant state of size m (batch size)
• NB: inserting one element is still O(1) in communication! (see paper)

m

Strengthened Security (+ Simplified Protocol) in Curve Botany
Contribution 2 (i.e., in Trees,Forests, etc)

Strengthened Security (+ Simplified Protocol) in Curve Botany
Contribution 2 (i.e., in Trees,Forests, etc)

“Strengthened
Security”?

Strengthened Security (+ Simplified Protocol) in Curve Botany
Contribution 2 (i.e., in Trees,Forests, etc)

“Strengthened
Security”?

Strengthening 1: 
Support maliciously-provided 
set commitments 
(applications? see final slide)

Strengthened Security (+ Simplified Protocol) in Curve Botany
Contribution 2 (i.e., in Trees,Forests, etc)

“Strengthened
Security”?

From a formal point of view 
weak binding → extractability

Strengthening 1: 
Support maliciously-provided 
set commitments 
(applications? see final slide)

Strengthened Security (+ Simplified Protocol) in Curve Botany
Contribution 2 (i.e., in Trees,Forests, etc)

“Strengthened
Security”?

From a formal point of view 
weak binding → extractability

Strengthening 1: 
Support maliciously-provided 
set commitments 
(applications? see final slide)

Strengthening 2: 
Prevent a form of “grieving” attacks 
(see Section 3 in paper for more)

Results: Improvements for Batching

Notes: 
Results in figure are for  

a small batch (m=8).

[Speedups should be better 
for larger batches. 

 
Also, we expect 

 an extra 2X improvement 
from low-hanging fruit 

optimizations 
(on top of the above)] 

 

Results: Improvements for Batching

|π| ≈ 8.1 KB ≈ 60% shorter

≈ 15.4 KB

Time(V) ≈ 60ms ≈ 3X faster

≈ 170ms

Time(P) ≈ 8s ≈ 2X faster

≈ 15.5s

Curve Forests
Curve Trees (naive batching)

Notes: 
Results in figure are for  

a small batch (m=8).

[Speedups should be better 
for larger batches. 

 
Also, we expect 

 an extra 2X improvement 
from low-hanging fruit 

optimizations 
(on top of the above)] 

 

[Benchmarks run on a common laptop (M2 Pro, 16GB RAM)]

Results: Improvements for Batching

|π| ≈ 8.1 KB ≈ 60% shorter

≈ 15.4 KB

Time(V) ≈ 60ms ≈ 3X faster

≈ 170ms

Time(P) ≈ 8s ≈ 2X faster

≈ 15.5s

Curve Forests
Curve Trees (naive batching)

Notes: 
Results in figure are for  

a small batch (m=8).

[Speedups should be better 
for larger batches. 

 
Also, we expect 

 an extra 2X improvement 
from low-hanging fruit 

optimizations 
(on top of the above)] 

 

[Benchmarks run on a common laptop (M2 Pro, 16GB RAM)]

Results: Improvements for Batching

|π| ≈ 8.1 KB ≈ 60% shorter

≈ 15.4 KB

Time(V) ≈ 60ms ≈ 3X faster

≈ 170ms

Time(P) ≈ 8s ≈ 2X faster

≈ 15.5s

Curve Forests
Curve Trees (naive batching)

Notes: 
Results in figure are for  

a small batch (m=8).

[Speedups should be better 
for larger batches. 

 
Also, we expect 

 an extra 2X improvement 
from low-hanging fruit 

optimizations 
(on top of the above)] 

 

[Benchmarks run on a common laptop (M2 Pro, 16GB RAM)]

Batching Techniques in Curve Forests (peep only)

m

Batching Techniques in Curve Forests (peep only)

• Amortization through forestation
m

Batching Techniques in Curve Forests (peep only)

• Amortization through forestation
• Forest = redundant representation with distinct sets of Pedersen generators

m

Batching Techniques in Curve Forests (peep only)

• Amortization through forestation
• Forest = redundant representation with distinct sets of Pedersen generators
• After this, the magical random linear combinations fairy does the heavy lifting.

m

Batching Techniques in Curve Forests (peep only)

• Amortization through forestation
• Forest = redundant representation with distinct sets of Pedersen generators
• After this, the magical random linear combinations fairy does the heavy lifting.

m

Batching Techniques in Curve Forests (peep only)

• Amortization through forestation
• Forest = redundant representation with distinct sets of Pedersen generators
• After this, the magical random linear combinations fairy does the heavy lifting.

• How much do you amortize?

m

Batching Techniques in Curve Forests (peep only)

• Amortization through forestation
• Forest = redundant representation with distinct sets of Pedersen generators
• After this, the magical random linear combinations fairy does the heavy lifting.

• How much do you amortize?
• Premise: basic cost unit for proving (rectangles above) consist of two steps:

m

Batching Techniques in Curve Forests (peep only)

• Amortization through forestation
• Forest = redundant representation with distinct sets of Pedersen generators
• After this, the magical random linear combinations fairy does the heavy lifting.

• How much do you amortize?
• Premise: basic cost unit for proving (rectangles above) consist of two steps:

m

“Select” (cheap) + “Rerandomize” (costly)

Batching Techniques in Curve Forests (peep only)

• Amortization through forestation
• Forest = redundant representation with distinct sets of Pedersen generators
• After this, the magical random linear combinations fairy does the heavy lifting.

• How much do you amortize?
• Premise: basic cost unit for proving (rectangles above) consist of two steps:

m

“Select” (cheap) + “Rerandomize” (costly)

In Curve Forests: m Rerandomize ops → 1 Rerandomize op

That’s it!

(full version here)Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)
• CurveTree-ish Lookups to instantiate Jolt-ish [CFR25] (NB: non verifier succinct)

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)
• CurveTree-ish Lookups to instantiate Jolt-ish [CFR25] (NB: non verifier succinct)

• (non malleability for free from same paper together with BP)

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)
• CurveTree-ish Lookups to instantiate Jolt-ish [CFR25] (NB: non verifier succinct)

• (non malleability for free from same paper together with BP)
• Applications to ZK Decision Trees (low hanging fruit—but might require prev bullet):

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)
• CurveTree-ish Lookups to instantiate Jolt-ish [CFR25] (NB: non verifier succinct)

• (non malleability for free from same paper together with BP)
• Applications to ZK Decision Trees (low hanging fruit—but might require prev bullet):

• applying it to the techniques from [CFF+24]

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)
• CurveTree-ish Lookups to instantiate Jolt-ish [CFR25] (NB: non verifier succinct)

• (non malleability for free from same paper together with BP)
• Applications to ZK Decision Trees (low hanging fruit—but might require prev bullet):

• applying it to the techniques from [CFF+24]
• Other applications: DAOs proving they follow their own rules in ZK (ask me later if interested).

Web/contact: binarywhales.com

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)
• CurveTree-ish Lookups to instantiate Jolt-ish [CFR25] (NB: non verifier succinct)

• (non malleability for free from same paper together with BP)
• Applications to ZK Decision Trees (low hanging fruit—but might require prev bullet):

• applying it to the techniques from [CFF+24]
• Other applications: DAOs proving they follow their own rules in ZK (ask me later if interested).

Web/contact: binarywhales.com

[CFR25]: SNARKs for Virtual Machines are non-malleable (EUROCRYPT25, to appear)

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)
• CurveTree-ish Lookups to instantiate Jolt-ish [CFR25] (NB: non verifier succinct)

• (non malleability for free from same paper together with BP)
• Applications to ZK Decision Trees (low hanging fruit—but might require prev bullet):

• applying it to the techniques from [CFF+24]
• Other applications: DAOs proving they follow their own rules in ZK (ask me later if interested).

Web/contact: binarywhales.com

[CFR25]: SNARKs for Virtual Machines are non-malleable (EUROCRYPT25, to appear)
[CFF+24]: Lookup Arguments: Improvements, Extensions and Applications to Zero-Knowledge Decision Trees (PKC24)

http://binarywhales.com

That’s it!
(But wait! What would one look at next on this topic?)

(full version here)

• This work: “Simple (well aimed) techniques already give significant benefits (batching and general case)”.
• Future work?

• More aggressive techniques to amortize everything (beyond Rerandomize)?
• (we have some failed attempts that might work in an idealized model we do not trust. Maybe second

n-th look there?)
• Towards zkVMs from Curve Trees? Maybe:

• Curve Forests (with the extractability security we have) → CurveTreeish Lookups (?)
• CurveTree-ish Lookups to instantiate Jolt-ish [CFR25] (NB: non verifier succinct)

• (non malleability for free from same paper together with BP)
• Applications to ZK Decision Trees (low hanging fruit—but might require prev bullet):

• applying it to the techniques from [CFF+24]
• Other applications: DAOs proving they follow their own rules in ZK (ask me later if interested).

Web/contact: binarywhales.com

[CFR25]: SNARKs for Virtual Machines are non-malleable (EUROCRYPT25, to appear)
[CFF+24]: Lookup Arguments: Improvements, Extensions and Applications to Zero-Knowledge Decision Trees (PKC24)

Thanks!

http://binarywhales.com

