LegoSNARK:
Compose ZKPs
Simply and Efficiently

Matteo Campanelli
Dario Fiore
Anais Querol

Instituto IMDEA Software

eprint: ia.cr/2019/142
API (soon): github.com/imdea-software/legosnark

Modular SNARKSs

Modular SNARKSs

Modularity (roughly):

Modular SNARKSs

Modularity (roughly):

Our focus: Non-Interactive and Succinct arguments

Modularity:
“Why?” and "What Exactly?”

Through two Tales...

A Tale of Efficiency

A Tale of Efficiency

"M R(h,A,B) =

A Tale of Efficiency

"M R(h,A,B) =

..
.

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

...

| hzsHAM
h—-
Y— é)
A—
B *

| AB:Y

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

...

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

...

h < SHA(Y)
h—o Bool
Y :
A—s @ |_:] ZKP1
B ®

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

..

| n2sHAYD
h—o Bool
-
A1 é) _JzkP1 i3
B .

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

..

| n2sHAYD
h—o Bool
-
A1 é) _JzkP1 i3
B .

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

..

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

..

| n2sHAYD
h—o Bool
-
A1 é) _JzkP1 i3
B .

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

..

| n2sHAYD
h—o Bool
Y.
A1 é) _JzkP1 i3
B . ‘ |
ABY - o het

This is suboptimal!

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

..

| n2sHAYD
h—o Bool
Y :
A_. d‘) l ! ZKP1 ' .
B . ' |
ABY o het

This is suboptimal!

Q: Can’t we get the best of both worlds?

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

{|hzsHA(Y) |}
h— % _

Bool
Y—
- | l ZKP1 ' .
B— .
| aB:Y ~ =
... THis Is siboptimal

Q: Can’t we get the best of both worlds?

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

{|hzsHA(Y) |}
h— % _

Bool
Y—s
- | l ZKP1 ' Py
B— - .
| aB:Y 8 ~
"""""""""""""""""""""""" This is suboptimal!

Q: Can’t we get the best of both worlds?

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

{|hzsHA(Y) |}
h— % _

Bool
Y—s /N
- v, | l ZKP1 ' Py
B— - .
| aB:Y 8 ~
"""""""""""""""""""""""" This is suboptimal!

Q: Can’t we get the best of both worlds?

A Tale of Efficiency

R(h, A, B) :=
“h £ SHA(A'B)”

[| hzSHA(Y)
h ‘ : Bool Algebra
Y—o q
A— —/ |‘ l ZKP1 o
B . : | |
| ABzY | : ~ N~

m—— This is suboptimal!

Q: Can’t we get the best of both worlds?

“Splittable" relations are common
(e.g. select+aggregate in a DB, polynomial evaluation)

A Tale of Simplicity

“ Q¥

There once were two bearded wizards. . .

A Tale of Simplicity

There once were two bearded wizards. . .

Digression: UNIX’s simplicity

Do Not Write Programs;
Glue Them Together.

UNIX shell commands are simple.

grep ‘pattern’ file Prints lines matching a pattern head -n 5 file prints first five lines from a file
tail file prints last lines from a file
sort -u file sorts and return unique lines —_— it gt
- (
uniq - file filters adacent repeated lines ' columns in a tab-delimited file

Do Not Write Programs;
Glue Them Together.

UNIX shell commands are simple.

grep ‘pattern’ file Prints lines matching a pattern head -n 5 file prints first five lines from a file
tail file prints last lines from a file
sort -u file sorts and return unique lines . R A TR P KR T
- (
uniq - file filters adjacent repeated lines ' columns in a tab-delimited file

Problem: find the top 5 most frequent first names in a digital phone book.
[..]
Mr. Groucho Marx 612345783
Ms. Emmy Noether 612567105

[..]

Do Not Write Programs;
Glue Them Together.

UNIX shell commands are simple.

grep ‘pattern’ file Prints lines matching a pattern head -n 5 file prints first five lines from a file
tail file prints last lines from a file

sort -u file sorts and return unique lines —_— R A TR P KR T

uniq - file filters adjacent repeated lines Sl columns in a tab-delimited file

Problem: find the top 5 most frequent first names in a digital phone book.

[.]
Mr. Groucho Marx 612345783

Ms. Emmy Noether 612567105
[.]

Solution:

cut -d ‘' -f2 book.txt | sort | uniq-c | sort-rn | head -5

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy

*Write programs that do one thing and do it well.

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy

*Write programs that do one thing and do it well.

*Write programs to work together.

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy

*Write programs that do one thing and do it well.
*Write programs to work together.

*Write programs to handle text streams,
because that is a universal interface.

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy

*Write programs that do one thing and do it well.
*Write programs to work together.

*Write programs to handle text streams,
because that is a universal interface.

LegoSNARK Philosophy

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy LegoSNARK Philosophy

*Write programs that do one thing and do it well.| «Write SNARKSs that do one thing and do it well
and fast.

*Write programs to work together.

*Write programs to handle text streams,
because that is a universal interface.

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy LegoSNARK Philosophy
*Write programs that do one thing and do it well.| «Write SNARKSs that do one thing and do it well
and fast.
*Write programs to work together. *Write SNARKSs to work together.

*Write programs to handle text streams,
because that is a universal interface.

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy LegoSNARK Philosophy
*Write programs that do one thing and do it well.| «Write SNARKSs that do one thing and do it well
and fast.
*Write programs to work together. «Write SNARKSs to work together.
*Write programs to handle text streams, *Write SNARKSs to handle commitments,

because that is a universal interface. because that is a universal ZK interface.

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy

*Write programs that do one thing and do it well.

0 work together.

*Write programs to handlg
because that ig a universal

e Write programs

The pipeline |

cut -d ‘'’ -f @ book.txt | sort | uniq-c |
sort -rn | head -5

LegoSNARK Philosophy

*Write SNARKSs that do one thing and do it well
and fast.

*Write SNARKSs to work together.

*Write SNARKs to handle commitments,
because that is a universal ZK interface.

Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy

*Write programs that do one thing and do it well.

0 work together.

*Write programs to handlg
because that ig a universal

e Write programs

The pipeline |

cut -d ‘'’ -f @ book.txt | sort | uniq-c |
sort -rn | head -5

LegoSNARK Philosophy

*Write SNARKSs that do one thing and do it well
and fast.

Write SNARKSs tg work together.
*Write SNARKS to handl
because that is a universar&<-inieHace.

\ 4

We need a “cryptographic pipeline”
(should preserve soundness,
ZK, succinctness, etc.)

Our Pipeline:
Commit-and-Prove (CP)

Our Pipeline:
Commit-and-Prove (CP)

Commitments.

u — 7

Our Pipeline:
Commit-and-Prove (CP)

.......
............
. "
. .
ooooooo
. .
......

Important:
can be opened in only one way.

Commitments.

u — 7

Our Pipeline:
Commit-and-Prove (CP)

.......
............
. "
. .
ooooooo
. .
......

Commitments. Important:

can be opened in only one way.
u — 7

CP-SNARKS.

Our Pipeline:
Commit-and-Prove (CP)

.......
............
. "
. .
ooooooo
. .
......

Commitments. Important:

can be opened in only one way.
u — 7

CP-SNARKS.

u—-e R(u)

Our Pipeline:
Commit-and-Prove (CP)

..........
............
....
. N
. .
......

Important:

Commitments.
" can be opened in only one way.

u — 7

/

CP-SNARKS.

“Relation R holds for some inputa”

Our Pipeline:
Commit-and-Prove (CP)

..........
............
....
. N
. .
......

Important:

Commitments.
" can be opened in only one way.

u — 7

/

CP-SNARKS.

Viy(m)

“Relation R holds for some inputa”

Our Pipeline:
Commit-and-Prove (CP)

.....
.................
....
. N
. .
......

Important:

Commitments.
" can be opened in only one way.

u — 7

CP-SNARKS.

wJ—1t RW

Viy(m)

“Relation R holds for some inputw”

Our Pipeline:
Commit-and-Prove (CP)

..........
............
""""
....
......

Important:
" can be opened in only one way.

/

Commitments.

CP-SNARKS.

“

“Relation R holds for some inputw” “Relation R holds for what is inside ¢~

Viy (1)

Our Pipeline:
Commit-and-Prove (CP)

..........
............
""""
....
......

Important:
" can be opened in only one way.

Commitments.

CP-SNARKS.
=
>
Vey(m) ny(ulzl ™

“Relation R holds for some inputw” “Relation R holds for what is inside ¢~

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

vy) viy(ulD m2)

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

vyl m) vyl n2)

That the two properties hold for the same u.

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

vyl m) vyl n2)

That the two properties hold for the same u.

.

| h2SHA(Y)
h—
Y —o
A—s
B—o

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

vyl m) vyl n2)

That the two properties hold for the same u.

.

| n2sHAQD
h—o
Y—o
A——o0 —_—)
B .

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

vyl m) vyl n2)

That the two properties hold for the same u.

... :
| nisHA(Y) | 1 h * SHA(Y)

Y —e

A——o qD _—

B .

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

vyl m) vyl n2)

That the two properties hold for the same u.

%héSHA(Y) lehl 1héSHA(Y)

A ?
AB=-Y YEBE AB=-Y

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

vyl m) vyl n2)

That the two properties hold for the same u.

s h
| h £ SHA(Y) :i h < SHA(Y)
h—s Yy
Y — ¢
A——e
B—s — A
AB-Y BE AB.Y
'

Our Pipeline:

Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

viy(u D m) Viy(ud,n2)

That the two properties hold for the same u.

...

| n2sEAMD
h—s
Y—
A—s
B—s
: AB=-Y

Verifier

S

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

viy(u D m) Viy(ud,n2)

That the two properties hold for the same u.

; --- é . s n
h : SHACY) || th: h = SHA(Y) ({ Verifier
x oo ~

Y—or :
A— . —
AB.1Y BE AB=Y
: I

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

viy(u D m) Viy(ud,n2)

That the two properties hold for the same u.

; --- é = e n
|nesHAD | th:j h = SHACY) | l Verifier
- o

Y —s

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

viy(u D m) Viy(ud,n2)

That the two properties hold for the same u. ,_\
[n:smacn | = — i h = SHA(Y) | l Verifier
h—

S
L8l

Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?

viy(u D m) Viy(ud,n2)

That the two properties hold for the same u. v=)
s ; — ’N
|nesEAD | a— i h - SHA(Y) | l Verifier

h—s ¥ ~
B— A ‘
AB.1Y B q AB-Y
... Viy(y(>], m)
A

Viy(y,)

Application:
Commit-(ahead-of-time)-and-Prove

Application:
Commit-(ahead-of-time)-and-Prove

Tx Tx
Tx Tx

Tx Tx

Application:
Commit-(ahead-of-time)-and-Prove

Tx Tx
TX -« Tx -«
Tx Tx
_— ®.
1S

Application:
Commit-(ahead-of-time)-and-Prove

1557 Tx
Tx -« Tx -«
Tx Tx
'S
a =

e — ’
l I “here is your l .
credit history”

Application:
Commit-(ahead-of-time)-and-Prove

1557 Tx
Tx -« Tx -«
Tx ar

“I commit Alice’s
credit history”

—"

l “here is vour

1 N
credit history ‘ .

Application:
Commit-(ahead-of-time)-and-Prove

Tx Tx
TX -« Tx -«
Tx i

“I commit Alice’s
credit history”

43

= » (O » ©

l “here is your ‘ . “My credit history
credit history” (certified by my bank

in the blockchain)

has features X, Y...”

Application:
Commit-(ahead-of-time)-and-Prove

why CP important?
Tx Tx can commit data before we

Tx Tx know what will be proved
<4 <4

Tx T

“I commit Alice’s
credit history”

43

= » () » ©

l “here is your ‘ . “My credit history
credit history” (certified by my bank

in the blockchain)

has features X, Y...”

Application:
Commit-(ahead-of-time)-and-Prove

why CP important?

Tx Tx can commit data before we
Tx Tx know what will be proved
< <+ i .
requirement. commitments

decoupled from proof system

Tx T

“I commit Alice’s
credit history”

k] ~
—=_, 0 >

I l here is your 4 A “My credit history ‘
credit history (certified by my bank

in the blockchain)
has features X. Y...”

Application:
Commit-(ahead-of-time)-and-Prove

Tx
Tx

Tx

“I commit Alice’s
credit history”

43

“here is your

credit history”

Tx
Tx

=

why CP important?
can commit data before we
know what will be proved

requirement. commitments
decoupled from proof system

state of the art. either not
decoupled or decoupling is
expensive (stay tuned)

S
» O >
L 1]

‘ . “My credit history

(certified by my bank
in the blockchain)
has features X. Y...”

So Far

So Far

We want to make SNARKs modular for better
efficiency and better design

So Far

We want to make SNARKs modular for better
efficiency and better design

To compose SNARKs: make them use

commitments as a “glue” (commit-and-
prove, or CP, SNARKS)

This Talk

This Talk

m Building CP gadgets
and its challenges

This Talk

Building CP gadgets
and its challenges

) Applications and Efficiency

| I'b ‘ of LegoSNARK

This Talk

Building CP gadgets
and its challenges

Applications and Efficiency
of LegoSNARK

LegoSNARK in practice:
a C++ API

Building a Pool of Gadgeé%

Building Gadgets

LegoSNARK
gadgets

Building Gadgets

LegoSNARK
gadgets

2

1. Import existing zkSNARKSs in the framework

Building Gadgets

LegoSNARK
gadgets

1. Import existing zkSNARKSs in the framework

don’t want to throw away years of research...
+ may want general-purpose systems as fallback option

Building Gadgets

LegoSNARK
gadgets

1. Import existing zkSNARKSs in the framework

don’t want to throw away years of research...
+ may want general-purpose systems as fallback option

2. Construct new CP-SNARKSs
exploit the power of specialization

1. Import Existing zkSNARKSs

LegoSNARK
gadgets

1. Import Existing zkSNARKSs

LegoSNARK zkSNARKSs , :
gadgets [Pinocchio] [DFGK14]

[Gro16] [GM17]

&2

1. Import Existing zkSNARKSs

LegoSNARK zkSNARKs _ ,
gadgets [Pinocchio] [DFGK14]
299 [Gro16] [GM17]
h 1

Two challenges:

1. Import Existing zkSNARKSs

LegoSNARK zkSNARKSs _ :
gadgets [Pinocchio] [DFGK14]
299 [Gro16] [GM17]
h 1

Two challenges:

A. Many Popular zkSNARKs are not CP

1. Import Existing zkSNARKSs

LegoSNARK zkSNARKs _ _
gadgets [Pinocchio] [DFGK14]
299 [Gro16] [GM17]
h 1

Two challenges:

A. Many Popular zkSNARKs are not CP

e Areal limitation? If II general-purpose, it can also prove “ccx(x) opens to x”

1. Import Existing zkSNARKSs

LegoSNARK
gadgets [Pinocchio] [DFGK14]

[Gro16] [GM17]

Two challenges:

A. Many Popular zkSNARKs are not CP

e Areal limitation? If II general-purpose, it can also prove “ccx(x) opens to x”

* Yes, in practice. Encoding the circuit for opening can be costly
(e.g. Pedersen commitment of 2048 bits: ~ 7minutes

1. Import Existing zkSNARKSs

LegoSNARK
gadgets [Pinocchio] [DFGK14]

[Gro16] [GM17]

Two challenges:

A. Many Popular zkSNARKs are not CP

e Areal limitation? If II general-purpose, it can also prove “ccx(x) opens to x”

* Yes, in practice. Encoding the circuit for opening can be costly
(e.g. Pedersen commitment of 2048 bits: ~ 7minutes

B. Others are CP but in a weaker sense / have different comm. schemes or keys

1. Import Existing zkSNARKSs

LegoSNARK
gadgets [PinOCChiO] [DFGK1 4]
[Gro16] [GM17]

Two challenges:
A. Many Popular zkSNARKs are not CP

e Areal limitation? If II general-purpose, it can also prove “ccx(x) opens to x”

* Yes, in practice. Encoding the circuit for opening can be costly
(e.g. Pedersen commitment of 2048 bits: ~ 7minutes

B. Others are CP but in a weaker sense / have different comm. schemes or keys

* How can they talk to each other?

1. Import Existing zkSNARKSs

LegoSNARK
gadgets [PinOCChiO] [DFGK1 4]
[Gro16] [GM17]

Two challenges:
A. Many Popular zkSNARKs are not CP

e Areal limitation? If II general-purpose, it can also prove “ccx(x) opens to x”

* Yes, in practice. Encoding the circuit for opening can be costly
(e.g. Pedersen commitment of 2048 bits: ~ 7minutes

B. Others are CP but in a weaker sense / have different comm. schemes or keys

* How can they talk to each other?

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK zkSNARKs .)
gadget [Pinocchio] [DFGK14]

[Gro16] [GM17]

S
ET

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK zkSNARKs , :
gadget [Pinocchio] [DFGK14]
[Gro16] [GM17]
h 1

Our Solution:

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK zkSNARKs _ :
gadget [Pinocchio] [DFGK14]
ccSNARKSs [Gro16] [GM17]
h 1

Our Solution:

* Observe many zkSNARKSs satisfy a new intermediate notion that
we call ccSNARK (commit-carrying SNARK)

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK zkSNARKSs _)
gadget [Pinocchio] [DFGK14]

ccSNARKs [Gro16] [GM17]

h

Our Solution:

* Observe many zkSNARKSs satisfy a new intermediate notion that
we call ccSNARK (commit-carrying SNARK)

e Build a compiler: ccSNARK — efficient CP-SNARK

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK zkSNARKSs

gadget [Pinocchio] [DFGK14]

ccSNARKs [Gro16] [GM17]

h

Our Solution:

* Observe many zkSNARKSs satisfy a new intermediate notion that
we call ccSNARK (commit-carrying SNARK)

» Build a compiler: ccSNARK — efficient CP-SNARK

“ccSNARK

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK
gadget

zkSNARKSs _ ,
[Pinocchio] [DFGK14]

ccSNARKs [Gro16] [GM17]

‘('IIIIIII

mmitment
Linking

Our Solution:

* Observe many zkSNARKSs satisfy a new intermediate notion that
we call ccSNARK (commit-carrying SNARK)

» Build a compiler: ccSNARK — efficient CP-SNARK

“ccSNARK

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK
gadget

zkSNARKSs _ ,
[Pinocchio] [DFGK14]

ccSNARKs [Gro16] [GM17]

‘('IIIIIII

mmitment
Linking

Our Solution:

* Observe many zkSNARKSs satisfy a new intermediate notion that
we call ccSNARK (commit-carrying SNARK)

» Build a compiler: ccSNARK — efficient CP-SNARK

Commitment
Linking

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK
gadget

zkSNARKSs _ _
[Pinocchio] [DFGK14]

ccSNARKs [Gro16] [GM17]

h

mmitment
Linking

Our Solution:

* Observe many zkSNARKSs satisfy a new intermediate notion that
we call ccSNARK (commit-carrying SNARK)

» Build a compiler: ccSNARK — efficient CP-SNARK

/ T
i
Commitment ug 1 R(u)
Linking —l

CP-SNARK

Compiling zkSNARKSs into CP-SNARKSs

LegoSNARK
gadget

zkSNARKSs _ _
[Pinocchio] [DFGK14]

ccSNARKs [Gro16] [GM17]

h

mmitment
Linking

Our Solution:

* Observe many zkSNARKSs satisfy a new intermediate notion that
we call ccSNARK (commit-carrying SNARK)

» Build a compiler: ccSNARK — efficient CP-SNARK

/ T
i
Commitment ug 1 R(u)
Linking —l

CP-SNARK

2. Specialized Proof Gadgets
in LegoSNARK

2. Specialized Proof Gadgets
in LegoSNARK

Linear Properties

2. Specialized Proof Gadgets
in LegoSNARK

S— Fuzt Q%E} AB:X
™

Linear Properties Matrix Multiplication

2. Specialized Proof Gadgets
in LegoSNARK

= =
—e¢ Fut AB-=-X
™7
Linear Properties Matrix Multiplication
=
acb=c
i

Hadamard Product

2. Specialized Proof Gadgets
in LegoSNARK

A[lei
) —¢ Fu:it B AB:=X
(v

Linear Properties Matrix Multiplication
:% acb<c ug—o Vi < a0
b

Hadamard Product Self-Permutation

2. Specialized Proof Gadgets
in LegoSNARK

A
ulZ]_' Fuzt B> AB-X
i
Linear Properties Matrix Multiplication
a>?
- achc ™) —¢ Vi w2 w0
S
Hadamard Product Self-Permutation

-:t Opn(;-)
™M opn()

Commitment Linking

Is This Really Any Good?

l

i

A
Y

Checking Modularity on
Its Promises

Checking Modularity on
Its Promises

e Can we build/glue new SNARKSs for
complex relations?

Checking Modularity on
Its Promises

e Can we build/glue new SNARKSs for
complex relations?

e |s any of this really efficient?

New General-purpose
SNARKSs

New General-purpose
SNARKSs

General-Purpose Efficient CPSnark:

LegoGroth16: efficient CP version of Groth16
(5000x faster than trivially opening a commitment in Groth16)

New General-purpose
SNARKSs

General-Purpose Efficient CPSnark:

LegoGroth16: efficient CP version of Groth16
(5000x faster than trivially opening a commitment in Groth16)

One of the first (CP)Snark with universal SRS: [concurrent to [Sonic]]

LegoUAC
(O(N) SRS; O(N) proving; Of(log2(N)) proof)

New General-purpose
SNARKSs

General-Purpose Efficient CPSnark:

LegoGroth16: efficient CP version of Groth16
(5000x faster than trivially opening a commitment in Groth16)

One of the first (CP)Snark with universal SRS: [concurrent to [Sonic]]

LegoUAC
(O(N) SRS; O(N) proving; Of(log2(N)) proof)

a™
k, v acb=c + ud—Viutu

J

Hadamard Product Self-Permutation

Gadgets with Optimal Proving Time:
Matrix Multiplication

BE
B AB:X
7

Gadgets with Optimal Proving Time:
Matrix Multiplication

A
Our gadget vs Groth16: %3 AB:X

Gadgets with Optimal Proving Time:
Matrix Multiplication

A
Our gadget vs Groth16: %EJ AB:X

Gadgets with Optimal Proving Time:
Matrix Multiplication

A
Our gadget vs Groth16: ﬁEj AB:X

; /' /v ™

(optimal proving time)
Proving Time Comparison

109s

2 W MatSC(P)
» B Groth(P)

T

o

» 10

80

& i

w

o .

e 2

Qo

o1

v

c

W

=

- 2

B J .08 .
B 10 12 14 16
log of size of matrix (nxn)

n3log(n)

Gadgets with Optimal Proving Time:
Matrix Multiplication

A
Our gadget vs Groth16: ﬂZIEj AB:X

L P)

(optimal proving time)
Proving Time Comparison Verification Time Comparison

n3log(n)

| 109s 0.05
10 0.05
''''''
@ x4
o o
o o
" .
Bo oo
2 : 0.0
v v | .
© ©
c [
o o
o W
@ b
= c 002
w a
£ £
—
0.01
0 -
- 10 12 14
log of size of matrix (nxn)

LegoSNARK In Practlcn
Pk

github.com/imdea-software/legosnark

Abstraction in SNARK APls

Abstraction in SNARK APls

A B C
(1][5] 11 1[0

3//o] 3]0 3|0
35/ [0 35/ 0| [35]]1
9/lo] |9|lo] [o]lo
27| [0 27/ (0] [27]]0
30| |1 30/ |0 30[| 0

35 % 1 - 35 =0

Standard Abstractions in
SNARK Libraries

Abstraction in SNARK APls

A B C
1[5 11 1[0

3//o] 3]0 3|0
35/ [0 35/ 0| [35]]1
9/lo] |9|lo] [o]lo
27| [0 27/ (0] [27]]0
30| |1 30/ |0 30[| 0

35 x 1 35 =0

S

Abstractions in LegoSNARK

Standard Abstractions in
SNARK Libraries

Goals of Our API

Goals of Our API

Being an EDSL.

Goals of Our API

Being an EDSL.

* Abstractions for gadgets and relations

Goals of Our API

Being an EDSL.

* Abstractions for gadgets and relations

¢ Strong Typing! (non-trivial in C++)

Goals of Our API

Being an EDSL.

* Abstractions for gadgets and relations
¢ Strong Typing! (non-trivial in C++)

e Super easy to compose gadgets and relations
(exploiting automatic type deduction)

Goals of Our API

Being an EDSL.

* Abstractions for gadgets and relations
¢ Strong Typing! (non-trivial in C++)

e Super easy to compose gadgets and relations
(exploiting automatic type deduction)

e Easy to define your own gadgets/relations

Defining Relations
e

Defining Relations
e

struct ShaSyntax

{

("h" s) .as< /ec>() .public(),
("Y"_s) .as<FldMatrix>() .commi O

using = < >

Compile-Time Checks in
LegoSNARK

h .
‘ h=S
YE HA(Y)

Compile-Time Checks in
LegoSNARK

h |
1 h < SHA
O I (¥

Composition

h
jhéSHAY
) (D

YB‘B‘E AB:Y

Composition

h
'héSHAY
YE] =

28%5 AB-=-Y

'

| h £ SHA(Y)
h—
Y —
A—s
B ¢
(| AB:Y

Wrapping up

Wrapping up

Modular Approach to
SNARK Design

Wrapping up

Modular Approach to
SNARK Design
1
4.
,,'....‘L’/ . . .
i Efficiency + Ease of Design

Wrapping up

Modular Approach to
SNARK Design

Efficiency + Ease of Design

Programming SNARKs
differently

github.com/imdea-software/legosnark

Wrapping up

Modular Approach to
SNARK Design

Efficiency + Ease of Design

Programming SNARKs
differently

github.com/imdea-software/legosnark

Recent Extension:
Accumulate-and-Prove ia.cr/2019/1255

Wrapping up

Modular Approach to
SNARK Design

Efficiency + Ease of Design

Programming SNARKs
differently

Recent Extension:
Accumulate-and-Prove ia.cr/2019/1255

specialized LegoSNARK gadgets =.’==

Relation commit. CP time space assumpt. uni upd
scheme scheme Prove Ver crs n
Pedersen commitments open to the same vector
Rt Pedersen* | CPiink A 1 n 1 AGM
Riink(c’, U, 0’):= c’=Ped(u, 0’) n=|u|
Linear properties Pedersen* CPjin n 1 n 1 AGM
=F-uz x -
Ree(u) =Fu=c Fma | polyCom | CPin IF|[+m+n logm-n | m-n logm-n 9 SESMKOE'
Matrix multiplication q-SDH, KoE
PolyC 2 24 2 | it
Rmm(X, A, B) = X< A-B nxn olyCom CPmmui 4 nelog n n ogn ROM
Hadamard product q-SDH, KoE
PolyC n log n n log n N
Rma(a, b, €) = ¢ £ ach =1l olyCom | CPhad g g ROM
Self permutation q-SDH, KoE
PolyCom CP n log n n log n PRl
Ry(u) = vic utuys n=|ul 4 e, g g ROM

Pedersen* = any Pedersen-like commitment. PolyCom from [zk-vSQL]

AGM=‘Algebraic Group Model’. universal crs (., .). updatable crs (yes, to be proven)

Thanks!

