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Our focus: Non-Interactive and Succinct arguments



Modularity:
“Why?” and "What Exactly?”

Through two Tales...
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R(h, A, B) :=
“h £ SHA(A'B)”
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h ‘ : Bool Algebra
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m—— This is suboptimal!

Q: Can’t we get the best of both worlds?

“Splittable" relations are common
(e.g. select+aggregate in a DB, polynomial evaluation)
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Digression: UNIX’s simplicity
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Do Not Write Programs;
Glue Them Together.

UNIX shell commands are simple.

grep ‘pattern’ file Prints lines matching a pattern head -n 5 file prints first five lines from a file
tail file prints last lines from a file

sort -u file sorts and return unique lines —_— R A TR P KR T

uniq - file filters adjacent repeated lines Sl columns in a tab-delimited file

Problem: find the top 5 most frequent first names in a digital phone book.

[.]
Mr. Groucho Marx 612345783

Ms. Emmy Noether 612567105
[.]

Solution:

cut -d ‘' -f2 book.txt | sort | uniq-c | sort-rn | head -5
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Do Not Write SNARKS;
Glue Them Together.

UNIX Philosophy

*Write programs that do one thing and do it well.

0 work together.

*Write programs to handlg
because that ig a universal

e Write programs

The pipeline |

cut -d ‘'’ -f @ book.txt | sort | uniq-c |
sort -rn | head -5

LegoSNARK Philosophy

*Write SNARKSs that do one thing and do it well
and fast.

Write SNARKSs tg work together.
*Write SNARKS to handl
because that is a universar&<-inieHace.
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We need a “cryptographic pipeline”
(should preserve soundness,
ZK, succinctness, etc.)
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Commit-and-Prove (CP) (cont.)
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Our Pipeline:
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Our Pipeline:
Commit-and-Prove (CP) (cont.)

Warm-up: What do we learn from verifying two CP-proofs on the same commitment?
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Application:
Commit-(ahead-of-time)-and-Prove

Tx
Tx

Tx

“I commit Alice’s
credit history”

43

“here is your

credit history”

Tx
Tx

=

why CP important?
can commit data before we
know what will be proved

requirement. commitments
decoupled from proof system

state of the art. either not
decoupled or decoupling is
expensive (stay tuned)

S
» O >
L 1]

‘ . “My credit history

(certified by my bank
in the blockchain)
has features X. Y...”



So Far




So Far

We want to make SNARKs modular for better
efficiency and better design




So Far

We want to make SNARKs modular for better
efficiency and better design

To compose SNARKs: make them use

commitments as a “glue” (commit-and-
prove, or CP, SNARKS)
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LegoSNARK in practice:
a C++ API




Building a Pool of Gadgeé%




Building Gadgets

LegoSNARK
gadgets



Building Gadgets

LegoSNARK
gadgets

2

1. Import existing zkSNARKSs in the framework



Building Gadgets

LegoSNARK
gadgets

1. Import existing zkSNARKSs in the framework

don’t want to throw away years of research...
+ may want general-purpose systems as fallback option



Building Gadgets

LegoSNARK
gadgets

1. Import existing zkSNARKSs in the framework

don’t want to throw away years of research...
+ may want general-purpose systems as fallback option

2. Construct new CP-SNARKSs
exploit the power of specialization
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A
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Linear Properties Matrix Multiplication
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Is This Really Any Good?
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New General-purpose
SNARKSs

General-Purpose Efficient CPSnark:

LegoGroth16: efficient CP version of Groth16
(5000x faster than trivially opening a commitment in Groth16)

One of the first (CP)Snark with universal SRS: [concurrent to [Sonic]]

LegoUAC
(O(N) SRS; O(N) proving; Of(log2(N)) proof)

a™
k, v acb=c +  ud—Viutu

J

Hadamard Product Self-Permutation



Gadgets with Optimal Proving Time:
Matrix Multiplication

BE
B AB:X
7




Gadgets with Optimal Proving Time:
Matrix Multiplication

A
Our gadget vs Groth16: %3 AB:X




Gadgets with Optimal Proving Time:
Matrix Multiplication

A
Our gadget vs Groth16: %EJ AB:X




Gadgets with Optimal Proving Time:
Matrix Multiplication

A
Our gadget vs Groth16: ﬁEj AB:X

; /' /v ™

(optimal proving time)
Proving Time Comparison
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Gadgets with Optimal Proving Time:
Matrix Multiplication

A
Our gadget vs Groth16: ﬂZIEj AB:X

L P )

(optimal proving time)
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LegoSNARK In Practlcn
Pk

github.com/imdea-software/legosnark
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A B C
(1][5] 11 1[0

3//o] 3]0 3|0
35/ [0 35/ 0| [35]]1
9/lo] |9|lo] [o]lo
27| [0 27/ (0] [27]]0
30| |1 30/ |0 30[ | 0

35 % 1 - 35 =0
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SNARK Libraries



Abstraction in SNARK APls

A B C
1[5 11 1[0

3//o] 3]0 3|0
35/ [0 35/ 0| [35]]1
9/lo] |9|lo] [o]lo
27| [0 27/ (0] [27]]0
30| |1 30/ |0 30[ | 0

35 x 1 35 =0

S

Abstractions in LegoSNARK

Standard Abstractions in
SNARK Libraries
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Goals of Our API

Being an EDSL.

* Abstractions for gadgets and relations
¢ Strong Typing! (non-trivial in C++)

e Super easy to compose gadgets and relations
(exploiting automatic type deduction)

e Easy to define your own gadgets/relations



Defining Relations
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Defining Relations
e

struct ShaSyntax

{

("h" s) .as< /ec>() .public(),
("Y"_s) .as<FldMatrix>() .commi O

using = < >
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Compile-Time Checks in
LegoSNARK

h |
1 h < SHA
O I (¥




Composition

h
jhéSHAY
) (D

YB‘B‘E AB:Y

---------------------------------------------




Composition

h
'héSHAY
YE] =

28%5 AB-=-Y

'

| h £ SHA(Y)
h—
Y —
A—s
B ¢
(| AB:Y
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Wrapping up

Modular Approach to
SNARK Design

Efficiency + Ease of Design

Programming SNARKs
differently

Recent Extension:
Accumulate-and-Prove ia.cr/2019/1255




specialized LegoSNARK gadgets =.’==

Relation commit. CP time space assumpt. uni upd
scheme scheme Prove Ver crs n
Pedersen commitments open to the same vector
Rt Pedersen* | CPiink A 1 n 1 AGM
Riink(c’, U, 0’):= c’=Ped(u, 0’) n=|u|
Linear properties Pedersen* CPjin n 1 n 1 AGM
=F-uz x -
Ree(u) =Fu=c Fma | polyCom | CPin IF|[+m+n logm-n | m-n logm-n 9 SESMKOE'
Matrix multiplication q-SDH, KoE
PolyC 2 24 2 | it
Rmm(X, A, B) = X< A-B nxn olyCom  CPmmui 4 nelog n n ogn ROM
Hadamard product q-SDH, KoE
PolyC n log n n log n N
Rma(a, b, €) = ¢ £ ach =1l olyCom | CPhad g g ROM
Self permutation q-SDH, KoE
PolyCom CP n log n n log n PRl
Ry(u) = vic utuys  n=|ul 4 e, g g ROM

Pedersen* = any Pedersen-like commitment. PolyCom from [zk-vSQL]

AGM=‘Algebraic Group Model’. universal crs (., .). updatable crs (yes, to be proven)



Thanks!



