Standardizing
Commit-and-Prove ZK

Daniel Benarroch Matteo Campanelli Dario Fiore
QEDIT IMDEA Software Institute, IMDEA Software Institute,
Madrid Madrid

2nd ZKProof Workshop

Look, V, | know u such that
R(u) holds.

Commit-and-Prove (CP) ZK

Look, V, | know u such that

R(u) holds. Commit-and-Prove ZKP:
And, by the way, _

= opens, A ZKP for the relation

Rcom(C, u) := R(u) AND c °pens, y

Motivation:
Soundness + Integrity

One example (rom [wzcPsi8)

+
A A training algorithm

AA
AA

A A
| |R
N
e
public commitment

CP in several applications presented in this workshop

More:

Composition of proof systems [CFQ19,Folklore]

My goal:

throwing things at you re CP standards.

Caveats on the focus:

Applications

Abstractions Non-Interactive case

Implementation

Standardizing CP

Standardizing CP

Why?

Why Discussing a Standard
for CP?

e Extensive usage

* — Jypical reasons to standardize
(maximize compatibility, etc.)

e |diosyncratic reasons

 CP requires a particular type of interoperability

|

NEXT: let’s give an example

Interoperability and CP

my data

Intuition:
Different CPZK operate on the same representation (the commitment).

This representation is part of the relation.

Standardizing CP

What?

Step O:
One Single Notion for CPZK

An arbitrary relation for CP:

Rcom(ck, ¢, u) := R(u) AND “c opens to u W.r.t.@

/

There exist two notions in literature; they treat ck differently*

Notion (A) Notion (B)
(ck output of KG) (ck input of KG)
[Geppetto] [CFQ19,Lipmaa16,~EG14]

ck <- Com.Setup()

(ck, srs) <- ZKCP.KeyGen(R) srs <- ZKCP.KeyGen(ck, R)

* NB: this distinction makes sense for systems with trusted setup.

Recall KG syntax: srs <- ZK.KeyGen(R)

Comparing Notions

Notion (A)
(ck output of KG)

May be the notion
worth standardizing

Notion (B)
(ck input of KG)

(ck, srs) <- ZKCP.KeyGen(R)

Commitment depends on
R and on scheme.

Quite specific.

srs <- ZKCP.KeyGen(ck, R)

Decouples commitment,
R and scheme.

Enables nice

applications for CP
(e.g. commit-ahead-of-time, etc.)

In the remainder of this presentation
| will assume (B) as a CP notion to standardize

What to standardize?

Plausibly, commitments. Why?
1. CPZK ~ ZK + Commitment

Rbank(D) AND

2. Commitments are the
“interoperability bottleneck” =—————pp
and they are part of the relation.

At least we may need to
agree on their syntax.

A Commitment Syntax

GOAL: A syntax for B 2. p

As for CP, different notions of “opening” are possible. Let’s agree on one.

A possible syntax:

“c opens to data D through opening o w.r.t. ck”

VfyCom(ck,c,D,0) —» b € {0,1}

!

Contrast this with (the more common) “\/erification”-flavored

Open(ck,c,0) - D € {0,1}* (opening always carries D)

\’ “Reconstruction”-flavored

(need to be able to recompute D from (c,0))

A Definition for CP* oo

R(x, u, w)

\ “free”

witnhess

Public
input

Committed
withess

Def. A CP-NIZK for relation R and commitment scheme Com is a NIZK for the
relation Rcom = (ck, R) s.t.

Reom(%, G, U, 0, W) =“R(x, u, W) =1 A VfyCom(ck, c, u, 0) = | ”

CP syntax.
KeyGen(ck, R) — srs = (ek, vk)

Prove(ek, x,c,u,0, W) —» «

Ver(vk, x, ¢, &) — 0/
*credits to Dario Fiore for the slide.

Standardizing CP

How (much)?

CP and Relation
Representation

A Commit-and-prove relation shows separation of concerns:

Rbank(D) AND B4 °P=25.D

/ S

Domain “Protocol”
Logic Logic

Q: Could CP be standardized at the level of relation representation?

CP and Relation
Representation (cont.)

. Could compile automatically to R* that:
define_rel(1. shows opening of Y

name: myComAndProveRel, |[2. applies domain logic
on domain input values (X,Y)

vars: (

D G- 1 = o

 comY: Commitment(Field)), DOMAIN .
constralnts Logicg ViyCom

/* Domain logic R(X,Y) */

Q: Could we do the same for other cryptographic constructs?

Not only Commit-and-Prove

. Could compile automatically to R* that:
define_rel(1. verifies signature on Y

name: mySigAndProveRel, |[2. applies domain logic
on domain input values (X,Y)

vars: (
D S-J s X >N K o W
§ sigY¥: Sign(Field)), g DOMAIN .|

/* Domain logic R(X,Y) */

Final Remarks/Qs

What abstraction(s) for CP?

e def. should decouple commitment and relation (or
should it?)

e Current proposal:

* modularity

 enable “nice” properties (commit-ahead-of-time, etc.)
Standardizing commitments? Which syntax?
Should we separate “domain” and “protocol” logic?

Standardizing applications, implementation, etc...?
Thanks!

