
Dario Fiore
Matteo Campanelli

Standardizing
Commit-and-Prove ZK

IMDEA Software Institute,
Madrid

Daniel Benarroch

QEDIT IMDEA Software Institute,

Madrid

2nd ZKProof Workshop

ZK

. . .

P V

Look, V, I know u such that
R(u) holds.

Commit-and-Prove (CP) ZK

. . .

P V

u

Rcom(c, u) := R(u) AND c u opens

Commit-and-Prove ZKP:

A ZKP for the relation

Look, V, I know u such that
R(u) holds.

And, by the way,
opens u

Motivation:
Soundness + Integrity

Composition of proof systems [CFQ19,Folklore]
CP in several applications presented in this workshop

More:

One example (from [WZCPS18])

training algorithm

public ML model

commit
public commitment

proof

Applications

Abstractions

Implementation

My goal:
throwing things at you re CP standards.

Caveats on the focus:

Non-Interactive case

What?

How (much)?

Standardizing CP

Why?

Why?

What?

How (much)?

Standardizing CP

Why Discussing a Standard
for CP?

• Extensive usage

• → Typical reasons to standardize 
 (maximize compatibility, etc.)

• Idiosyncratic reasons

• CP requires a particular type of interoperability

NEXT: let’s give an example

Interoperability and CP

Intuition:
Different CPZK operate on the same representation (the commitment).

This representation is part of the relation.

= Commit(D)

Rbank(D) AND D opens

Rempl(D) AND D opens

Me

D

my data

πbank

πemployer

Rland(D) AND D opens

πlandlord

Why?

What?

How (much)?

Standardizing CP

Step 0:
One Single Notion for CPZK

An arbitrary relation for CP:

Rcom(ck, c, u) := R(u) AND “c opens to u w.r.t. ck”

* NB: this distinction makes sense for systems with trusted setup.

Recall KG syntax: srs <- ZK.KeyGen(R)

There exist two notions in literature; they treat ck differently*

(ck, srs) <- ZKCP.KeyGen(R)

Notion (B)
(ck input of KG)

[CFQ19,Lipmaa16,~EG14]

Notion (A)
(ck output of KG)

[Geppetto]

srs <- ZKCP.KeyGen(ck, R)

ck <- Com.Setup().
.
.

Comparing Notions

Commitment depends on
 R and on scheme.

Quite specific.

Decouples commitment,
R and scheme.

Enables nice
 applications for CP

(e.g. commit-ahead-of-time, etc.)

May be the notion
 worth standardizing

In the remainder of this presentation
I will assume (B) as a CP notion to standardize

Notion (A)
(ck output of KG)

Notion (B)
(ck input of KG)

(ck, srs) <- ZKCP.KeyGen(R) srs <- ZKCP.KeyGen(ck, R)

What to standardize?
Plausibly, commitments. Why?

2. Commitments are the

“interoperability bottleneck”

and they are part of the relation.

At least we may need to

 agree on their syntax.

Rland(D) AND D opens

= Commit(D)
Rbank(D) AND D opens

Rempl(D) AND D opens

Me

D

πbank

πemployer

πlandlord

my data

1. CPZK ~ ZK + Commitment

A Commitment Syntax
D opensGOAL: A syntax for

As for CP, different notions of “opening” are possible. Let’s agree on one.

A possible syntax:
𝖵𝖿𝗒𝖢𝗈𝗆(ck, c, D, o) → b ∈ {0,1}

“c opens to data D through opening o w.r.t. ck”

Contrast this with (the more common)
𝖮𝗉𝖾𝗇(ck, c, o) → D ∈ {0,1}*

“Verification”-flavored

(opening always carries D)

“Reconstruction”-flavored

(need to be able to recompute D from (c,o))

A Definition for CP* [CDQ19]

R(x , u , ω)

Public

input

Committed

witness

“free"

witness

*credits to Dario Fiore for the slide.

Def. A CP-NIZK for relation R and commitment scheme Com is a NIZK for the
 relation Rcom ≔ (ck, R) s.t.

Rcom(x, c, u, o, ω) ≔ “ R(x, u, ω) = 1 ⋀ VfyCom(ck, c, u, o) = 1 ”

CP syntax.

KeyGen(ck, R) → srs = (ek, vk)

Prove(ek, x, c, u, o, ω) → 𝝅

Ver(vk, x, c, 𝝅) → 0/1

Why?

What?

How (much)?

Standardizing CP

CP and Relation
Representation

Rbank(D) AND D opens

A Commit-and-prove relation shows separation of concerns:

Domain
Logic

“Protocol”
Logic

Q: Could CP be standardized at the level of relation representation?

define_rel(
name: myComAndProveRel,
vars:(

X: Field,
comY: Commitment(Field)),

constraints:
/* Domain logic R(X,Y) */

)

CP and Relation
Representation (cont.)

Q: Could we do the same for other cryptographic constructs?

Could compile automatically to R* that:
1. shows opening of Y

2. applies domain logic

 on domain input values (X,Y)

Domain
Logic

X Y

VfyCom

CY OY

Not only Commit-and-Prove

define_rel(
name: mySigAndProveRel,
vars:(

X: Field,
sigY: Sign(Field)),

constraints:
/* Domain logic R(X,Y) */

)

Could compile automatically to R* that:
1. verifies signature on Y

2. applies domain logic

 on domain input values (X,Y)

Domain
Logic

X Y

VfySig

SY

Final Remarks/Qs
• What abstraction(s) for CP?

• def. should decouple commitment and relation (or
should it?)

• Current proposal:

• modularity

• enable “nice” properties (commit-ahead-of-time, etc.)

• Standardizing commitments? Which syntax?

• Should we separate “domain” and “protocol” logic?

• Standardizing applications, implementation, etc…?

Thanks!

